已知實(shí)數(shù)a,b,c,d,求函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
的最小值.
考點(diǎn):兩點(diǎn)間距離公式的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
表示(x,0)與(-a,-b),(c,-d)兩點(diǎn)間的距離,分類討論,可得結(jié)論.
解答: 解:函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
表示(x,0)與(-a,-b),(c,-d)兩點(diǎn)間的距離.
(-a,-b),(c,-d)在x軸異側(cè)時(shí),函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
的最小值為
(c+a)2+(b-d)2

(-a,-b),(c,-d)在x軸同側(cè)時(shí),。-a,-b)關(guān)于x軸的對(duì)稱點(diǎn)((-a,b),則函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
的最小值為
(c+a)2+(b-d)2
點(diǎn)評(píng):本題考查兩點(diǎn)間距離公式的應(yīng)用,考查學(xué)生的計(jì)算能力,理解函數(shù)f(x)=
(x+a)2+b2
+
(x-c)2+d2
表示(x,0)與(-a,-b),(c,-d)兩點(diǎn)間的距離是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在回歸分析中,R2=1-
n
i=1
(y1-
.
y
1
)
2
n
i=1
(y1+
.
y
1
)
2
用來(lái)刻畫回歸的效果,甲、乙、丙三個(gè)模型中已知R2=0.76,R2=0.95,R2=0.83,則這三個(gè)模型的擬合效果由差到好的順序是( 。
A、甲、丙、乙
B、乙、丙、甲
C、丙、乙、甲
D、甲、乙、丙

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出T的值為( 。
A、18B、24C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax2+x+1有極大值的充要條件是( 。
A、a<0B、a≥0
C、a>0D、a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=2cosx的圖象經(jīng)過(guò)怎樣的變換能變成函數(shù)y=2cos(2x+
π
3
)的圖象( 。
A、向左平移
π
3
個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
,縱坐標(biāo)不變
C、將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
,縱坐標(biāo)不變,再向左平移
π
6
個(gè)單位長(zhǎng)度
D、將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再向左平移
π
6
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次人才招聘會(huì)上,甲、乙兩家公司開出的工資標(biāo)準(zhǔn)分別是:
甲公司:第一年月工資1500元,以后每年月工資比上一年月工資增加230元;
乙公司:第一年月工資2000元,以后每年月工資在上一年月工資基礎(chǔ)上遞增5%.
設(shè)某人年初想從甲、乙兩公司中選擇一家公司去工作.
(1)若此人分別在甲公司或乙公司連續(xù)工作n年,則他在兩公司第n年的月工資分別是多少?
(2)若此人在一家公司連續(xù)工作10年,則從哪家公司得到的報(bào)酬較多?(參考數(shù)據(jù):1.059≈1.5513,1.0510≈1.6289)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過(guò)直線l上的動(dòng)點(diǎn)P作圓C的一條切線,設(shè)切點(diǎn)為T,求PT的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn=2an-2,數(shù)列{bn}是首項(xiàng)為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列{
bn
an
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在2014年全國(guó)高校自主招生考試中,某高校設(shè)計(jì)了一個(gè)面試考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立回答全部問(wèn)題.規(guī)定:至少正確回答其中2題的便可通過(guò).已知6道備選題中考生甲有4題能正確回答,2題不能回答;考生乙每題正確回答的概率都為
2
3
,且每題正確回答與否互不影響.
(Ⅰ)分別寫出甲、乙兩考生正確回答題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(Ⅱ)試用統(tǒng)計(jì)知識(shí)分析比較兩考生的通過(guò)能力.

查看答案和解析>>

同步練習(xí)冊(cè)答案