14.設(shè)命題p:?x∈R,函數(shù)f(x)=lg(ax2-x+$\frac{1}{16}$a)有意義,命題q:?x>0,不等式$\sqrt{2x+1}$<1+ax恒成立,如果命題“p或q”為真命題,命題“p且q”為假命題,求實數(shù)a的取值范圍.

分析 分別求出命題p,q為真命題時的等價條件,利用命題p或q為真命題,p且q為假命題,求a的范圍即可.

解答 解:當命題p為真命題
即f(x)=lg(ax2-x+$\frac{1}{16}$a)的定義域為R,
即ax2-x+$\frac{1}{16}$a>0對任意實數(shù)x均成立,
∴$\left\{\begin{array}{l}{a>0}\\{△=1-{\frac{1}{4}a}^{2}<0}\end{array}\right.$,解得a>2,
當命題q為真命題
即:$\sqrt{2x+1}$-1<ax對一切正實數(shù)均成立
即a>$\frac{\sqrt{2x+1}-1}{x}$=$\frac{2}{\sqrt{2x+1}+1}$對一切正實數(shù)x均成立,
∵x>0,
∴$\sqrt{2x+1}$>1,
∴$\sqrt{2x+1}$+1>2,
∴$\frac{2}{\sqrt{2x+1}+1}$<1,
∴命題q為真命題時a≥1.
∵命題p或q為真命題,命題p且q為假命題,
∴p與q有且只有一個是真命題.
當p真q假時,a不存在;
當p假q真時,a∈[1,2].
綜上知a∈[1,2].

點評 本題考查復合命題與簡單命題真假的關(guān)系,利用條件先求出命題p,q為真命題的等價條件是解決這類題的關(guān)鍵,屬于一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù):①f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;②f(x)=x3-x;③f(x)=ln(x+$\sqrt{{x}^{2}+1}$);④f(x)=ln$\frac{1-x}{1+x}$.
其中奇函數(shù)的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列關(guān)系中表述正確的是( 。
A.0∈{x2=0}B.0∈{(0,0)}C.0∈∅D.0∈N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知(x-5)2+y2=3,求$\frac{y}{x}$的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=Asinωx+Bcosωx(其中A,B,ω是實常數(shù),且ω>0,a=0)的最小正周期為2,且當x=$\frac{1}{3}$時,f(x)取得最大值2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對邊,且b=6,a=2$\sqrt{3}$,A=30°,試求ac的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)集合M={x|x=3k,k∈Z},P={x|x=3k+1,k∈Z},Q={x|x=3k-1,k∈Z},若a∈M,b∈P,c∈Q,求a+b-c所在的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f($\frac{1}{2}$${log}_{\frac{1}{2}}$x)=$\frac{x-1}{x+1}$.
(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性;
(3)判斷f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=4x+k•2x+1,m(x)=2x+$\frac{1}{{2}^{x}}$
(1)當k=-4時,求函數(shù)f(x)在x∈[0,2]上的最小值;
(2)判斷m(x)的奇偶性,并利用定義證明函數(shù)m(x)在(0,+∞)上單調(diào)遞增;
(3)設(shè)g(x)=|$\frac{f(x)}{{4}^{x}+{2}^{x}+1}$|,若存在x1,x2,x3∈[-1,log2$\frac{3+\sqrt{5}}{2}$],使得g(x1),g(x2),g(x3)為三邊長的三角形不存在,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案