如圖為一個(gè)幾何體的三視圖,則該幾何體的外接球的表面積為(  )
A、4πB、8π
C、12πD、16π
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:如圖所示,該幾何體為四棱錐P-ABCD,其中PA⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA=2.取PC的中點(diǎn)O,則點(diǎn)O是該幾何體的外接球的球心.求出即可.
解答: 解:如圖所示,該幾何體為四棱錐P-ABCD,其中PA⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA=2.
取PC的中點(diǎn)O,則點(diǎn)O是該幾何體的外接球的球心.
OC=
1
2
PC=
1
2
PA2+AC2
=
3

∴該幾何體的外接球的表面積=4πR2=12π.
故選:C.
點(diǎn)評(píng):本題考查了四棱錐外接球的表面積、三視圖的有關(guān)知識(shí),考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距和短軸長(zhǎng)相等,且橢圓C過(guò)點(diǎn)(1,-
2
2
).過(guò)點(diǎn)P(0,2)的直線l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)△MON的面積最大時(shí),求直線l 的方程,并求出此時(shí)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列命題:
(1)在△ABC中,∠A<∠B是cos2A>cos2B的充要條件;
(2)λ,μ為實(shí)數(shù),若λ
a
b
,則
a
b
共線;
(3)若向量
a
,
b
滿足|
a
|=|
b
|,則
a
=
b
a
=-
b
;
(4)函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)
的最小正周期是π;
(5)若命題p為:
1
x-1
>0,則?p:
1
x-1
≤0
(6)由a1=1,an=3n-1,求出S1,S2,S3猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式的推理是歸納推理.
其中正確的命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,這個(gè)三棱錐最長(zhǎng)棱的棱長(zhǎng)是( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

移動(dòng)公司在國(guó)慶期間推出4G套餐,對(duì)國(guó)慶節(jié)當(dāng)日辦理套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.國(guó)慶節(jié)當(dāng)天參與活動(dòng)的人數(shù)統(tǒng)計(jì)結(jié)果如圖所示,現(xiàn)將頻率視為概率.
(1)求某人獲得優(yōu)惠金額不低于300元的概率;
(2)若采用分層抽樣的方式從參加活動(dòng)的客戶中選出6人,再?gòu)脑?人中隨機(jī)選出兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-2x(x∈R),則f(x)的零點(diǎn)個(gè)數(shù)為(  )個(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則sinB=(  )
A、
1
4
B、
3
4
C、
7
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,M是BC的中點(diǎn),AM=5,BC=6,則
AB
AC
等于( 。
A、9B、12C、16D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間x∈[1,2)是減函數(shù),則函數(shù) f(x)( 。
A、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是增函數(shù)
B、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是減函數(shù)
C、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是增函數(shù)
D、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案