19.函數(shù)f(x)=Asin(ωx+φ)$(A>0,\;|φ|<\frac{π}{2})$的圖象如圖所示,為了得到f(x)圖象,則只需將g(x)=sin2x的圖象( 。
A.向右平移$\frac{π}{6}$個長度單位B.向左平移$\frac{π}{6}$個長度單位
C.向右平移$\frac{π}{3}$個長度單位D.向左平移$\frac{π}{3}$個長度單位

分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)f(x)的解析式;再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)$(A>0,\;|φ|<\frac{π}{2})$的圖象,可得A=1,
$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,∴ω=2,故f(x)=sin(2x+φ).
再根據(jù)五點(diǎn)法作圖可得2×$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$).
故將g(x)=sin2x的圖象向左平移$\frac{π}{6}$個單位,可得 f(x)=sin2(x+$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)的圖象,
故選:B.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值;函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在正方體ABCD-A1B1C1D1中,M是線段A1C1的中點(diǎn),若四面體M-ABD的外接球體積為36π,則正方體棱長為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a為第二象限角,cosa=-$\frac{4}{5}$,則sin2a=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在數(shù)列{an}中,a1=1,an+1-an=ln(1+$\frac{1}{n}$),則an=lnn+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)定義域?yàn)镽,若存在常數(shù)c>0,對?x∈R都有f(x+c)>f(x-c),則稱f(x)具有性質(zhì)P,給定三個函數(shù)①f(x)=|x|,②f(x)=sinx,③f(x)=x3-x.其中具有性質(zhì)P的函數(shù)的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos$\frac{x}{4}$•cos($\frac{π}{2}$-$\frac{x}{4}$)•cos(π-$\frac{x}{2}$),將函數(shù)f(x)在(0,+∞)的所有極值點(diǎn)的橫坐標(biāo)從小到大排成一數(shù)列,記為{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知二次函數(shù)f(x)=ax2-(a+2)x+1,若a 為整數(shù),且函數(shù)f(x)在(-2,-1)上恰有一個零點(diǎn),則a的值是( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.記[x]是不超過x的最大整數(shù),當(dāng)0<x≤20時(shí),函數(shù)$f(x)=[\frac{x}{2}]+[\frac{x}{3}]+[\frac{x}{5}]+[\frac{x}{7}]+[\frac{x}{9}]-x$的零點(diǎn)為6,7,8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+3cost}\\{y=2+3sint}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與平面直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為$\sqrt{2}$pcos(θ-$\frac{π}{4}$)=m.
(1)求圓C的普通方程及直線l的直角坐標(biāo)方程;
(2)設(shè)圓心C到直線l的距離等于$\sqrt{2}$,求m的值.

查看答案和解析>>

同步練習(xí)冊答案