分析 (1)找出平方差等于1的兩個整數(shù)a,b即可;
(2)設(shè)x,y∈M,將xy表示成兩個整數(shù)的平方差即可;
(3)假設(shè)-2∈M,使用反證法推出與已知相矛盾的結(jié)論即可,
解答 解:(1)令a=1,b=0,則a2-b2=1,
∴1∈M.
(2)設(shè)x,y∈M,則x=a2-b2,y=c2-d2,其中a,b,c,d∈Z.
∴xy=(a2-b2)(c2-d2)=(a2c2+b2d2)-(a2d2+b2c2)=(a2c2+b2d2+2abcd)-(a2d2+b2c2+2abcd)=(ac+bd)2-(ad+bc)2.
∵a,b,c,d∈Z.∴ac+bd∈Z,ad+bc∈Z.
∴xy∈Z.
(3)假設(shè)-2∈M,則存在a,b∈Z,使得a2-b2=-2,
∴(a+b)(a-b)=-2.
∵a,b∈Z,∴a+b∈Z,a-b∈Z.
∴$\left\{\begin{array}{l}{a+b=1}\\{a-b=-2}\end{array}\right.$或$\left\{\begin{array}{l}{a+b=-2}\\{a-b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a+b=-1}\\{a-b=2}\end{array}\right.$或$\left\{\begin{array}{l}{a+b=2}\\{a-b=-1}\end{array}\right.$.
∴$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$.
與a,b∈Z矛盾.
∴-2∉M.
點評 本題考查了元素與集合的關(guān)系判斷,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | A=60°的三角形 | ||
C. | 等腰三角形或A=60°的三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com