分析 設(shè)M(x,0)為矩形對角線的交點,則|MA|=|MB|,利用兩點之間的距離公式可得x,再利用中點坐標公式即可得出.
解答 解:設(shè)M(x,0)為矩形對角線的交點,則|MA|=|MB|,
∴$\sqrt{{(x+1)}^{2}+9}$=$\sqrt{{(x+2)}^{2}+16}$,
解得x=-5.
∴$\left\{\begin{array}{l}{-5=\frac{{x}_{c}-1}{2}}\\{0=\frac{{y}_{c}+3}{2}}\end{array}\right.$,解得C(-9,-3).
同理可得D(-8,-4),
故答案為:(-9,-3),(-8,-4).
點評 本題考查了兩點之間的距離公式、中點坐標公式、矩形的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | $-\frac{4\sqrt{3}}{3}$ | C. | 4$\sqrt{3}$ | D. | $-4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com