A. | 8 | B. | -8 | C. | ±8 | D. | $±\frac{9}{8}$ |
分析 設(shè)等差數(shù)列的公差為d,由等差數(shù)列的前n項和公式能求出公差d的值;設(shè)等比數(shù)列的公比為q,由等比數(shù)列的前n項和公式能求出公比q的值.由此能夠求出b2(a2-a1)的值.
解答 解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,則有
$\left\{\begin{array}{l}{-1+3d=-9}\\{-9{q}^{4}=-1}\end{array}\right.$,解得d=-$\frac{8}{3}$,q=±$\frac{\sqrt{3}}{3}$,
∴b2(a2-a1)=-9×$(±\frac{\sqrt{3}}{3})^{2}$×(-$\frac{8}{3}$)=8.
故選:A.
點評 本題考查等比數(shù)列和等差數(shù)列的性質(zhì)和應用,注意等比數(shù)列和等差數(shù)列的通項公式的合理運用,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,1] | B. | (1,2) | C. | (-3,0] | D. | [1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{1+\sqrt{5}}}{2}$ | B. | $\frac{{3+\sqrt{5}}}{4}$ | C. | $\sqrt{\frac{{1+\sqrt{5}}}{2}}$ | D. | $\frac{{\sqrt{3+\sqrt{5}}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{10}$ | B. | $\frac{π}{20}$ | C. | $\frac{3π}{20}$ | D. | $\frac{π}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com