5.已知$\overrightarrow{a}$=(-1,1),$\overrightarrow{a}+\overrightarrow$=(3,4),求向量$\overrightarrow$的坐標(biāo).

分析 根據(jù)向量的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:∵$\overrightarrow{a}$=(-1,1),$\overrightarrow{a}+\overrightarrow$=(3,4),
∴$\overrightarrow$=(3,4)-(-1,1)=(4,3).

點(diǎn)評(píng) 本題考查了向量的運(yùn)算性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)A(1,3),B(-2,-1),若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍( 。
A.k≥$\frac{1}{2}$B.k≤-2C.k≥$\frac{1}{2}$或k≤-2D.-2≤k≤$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列四個(gè)命題中正確的是( 。
A.y=sinx在第一象限單調(diào)遞增B.第一象限角必是銳角
C.y=$\frac{2}{cosx}$-cosx在(0,$\frac{π}{2}$)單調(diào)遞增D.終邊相同的角必相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{1+2sinx}$,則f(x)的單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知定義在R上的奇函數(shù)f(x)=$\frac{a}{{2}^{x}+1}$+b的圖象過(guò)點(diǎn)(-1,$\frac{1}{3}$),則f(2)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=($\frac{1}{1+x}$-1)lnx的極值點(diǎn)為x=x0,記e≈2.71828,給出下列4個(gè)式子的序號(hào):
①f(x0)<x0; 
②f(x0)>x0;
③ef(x0)<1;
 ④e2f(x0)>1,
其中,正確的序號(hào)是(  )
A.①③B.②④C.D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩個(gè)頂點(diǎn)三等分焦距,則雙曲線的離心率為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知點(diǎn)Q(1,2),P是動(dòng)點(diǎn),且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{k}_{OP}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點(diǎn)A,B和M,N,設(shè)線段AB,MN的中點(diǎn)分別為E,F(xiàn)求證:直線EF恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{2x-y-1≤0}\\{x+y-3≤0}\end{array}\right.$,則z=x-y的最小值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案