分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答 解:由z=x-y得y=x-z,作出不等式組約束條件$\left\{\begin{array}{l}{x-1≥0}\\{2x-y-1≤0}\\{x+y-3≤0}\end{array}\right.$,對應(yīng)的平面區(qū)域如圖(陰影部分)
平移直線y=x-z,由圖象可知當直線y=x-z,過點A點,
由$\left\{\begin{array}{l}{x=1}\\{x+y-3=0}\end{array}\right.$,可得A(1,2)時,直線y=x-z的截距最大,此時z最小,
∴目標函數(shù)z=x-y的最小值是-1.
故答案為:-1.
點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1” | |
B. | “x>2”是“x2-3x+2>0”的充分不必要條件 | |
C. | 若命題“p:?x∈R,x2+x+1≠0”,則“¬p:?x0∈R,x02+x0+1=0” | |
D. | 若“p∨q”為真命題,則p、q均為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | $\frac{1-\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com