2.已知P(x,y)在不等式組$\left\{\begin{array}{l}{y≤x}\\{x+y≤8}\\{y≥-1}\end{array}\right.$所確定的平面區(qū)域內(nèi),則z=2x+y的最大值為17.

分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),結(jié)合函數(shù)的圖象求出z的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{y=-1}\\{x+y=8}\end{array}\right.$,解得A(9,-1),
由z=2x+y得:y=-2x+z,
顯然直線=-2x+z過A(9,-1)時(shí),z最大,
z的最大值是17,
故答案為:17.

點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標(biāo)系xOy中,P(x,y)為不等式$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤3}\\{x≥1}\end{array}\right.$所表示的平面區(qū)域內(nèi)的一個(gè)動(dòng)點(diǎn),則z=$\frac{y+1}{x+1}$的最大值為(  )
A.$\frac{4}{3}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)和g(x)是兩個(gè)定義在區(qū)間M上的函數(shù),若對(duì)任意的x∈M,存在常數(shù)x0∈M,使的f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則稱f(x)與g(x)在區(qū)間M上是“相似函數(shù)”,若f(x)=2x3-3(a+1)x2+6ax+b與g(x)=x+$\frac{4}{x}$在區(qū)間[1,3]上是“相似函數(shù)”,則a,b的值分別是(  )
A.a=-2,b=0B.a=-2,b=-2C.a=2,b=0D.a=2,b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$時(shí),z=$\frac{x}{a}$+$\frac{y}$(a≥b>0)的最大值為2,則a+b的最小值為(  )
A.4+2$\sqrt{3}$B.4-2$\sqrt{3}$C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+{4}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則f(f($\frac{\sqrt{2}}{4}$))等于( 。
A.$\frac{9}{8}$B.$\frac{5}{4}$C.$\frac{11}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+1|-a|x-l|.
(Ⅰ)當(dāng)a=-2時(shí),解不等式f(x)>5;
(Ⅱ)若(x)≤a|x+3|,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}({n≥1,n∈{N^*}})$,數(shù)列{bn}是以1為首項(xiàng),2公比的等比數(shù)列.
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(Ⅱ)求數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)是定義域?yàn)镽的單調(diào)減的奇函數(shù),若f(3x+1)+f(1)≥0,則x的取值范圍是$({-∞,-\frac{2}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)$Q({-2\sqrt{2},0})$及拋物線x2=-4y上一動(dòng)點(diǎn)P(x,y),則|y|+|PQ|的最小值是( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案