分析 (1)求導(dǎo)f′(x)=a(lnx+1)+$\frac{2}{x}$,g′(x)=2bx+4;從而可得b+4-5=0,a+2=2b+4;從而求參數(shù)的值;
(2)要使得當(dāng)x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方,只證f(x)<g(x)(x≠1),不妨設(shè)F(x)=f(x)-g(x),從而求導(dǎo)F′(x)=4lnx+$\frac{4x+2}{x}$-2x-4=4lnx+$\frac{2}{x}$-2x;從而化為恒成立問題,再轉(zhuǎn)化為最值問題.
解答 解:(1)∵f′(x)=a(lnx+1)+$\frac{2}{x}$,g′(x)=2bx+4;
∴f′(1)=a+2,g′(1)=2b+4;
又∵曲線y=f(x)與曲線y=g(x)在點(diǎn)(1,0)處有相同的切線,
∴f(1)=0=g(1)=b+4-5,f′(1)=g′(1);
即b+4-5=0,a+2=2b+4;
從而解得,b=1,a=4;
(2)證明:要使得當(dāng)x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方,
即需證f(x)<g(x)(x≠1),
不妨設(shè)F(x)=f(x)-g(x),
則F(x)=(4x+2)lnx-x2-4x+5;
∴F′(x)=4lnx+$\frac{4x+2}{x}$-2x-4=4lnx+$\frac{2}{x}$-2x;
令G(x)=F′(x),
∴G′(x)=$\frac{4}{x}$-$\frac{2}{{x}^{2}}$-2≤0恒成立,
∴F′(x)在(0,+∞)上單調(diào)遞減,
又∵F′(1)=0,
∴當(dāng)x∈(0,1)時,F(xiàn)′(x)>0,當(dāng)x∈(1,+∞)時,F(xiàn)′(x)<0;
∴F(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
即當(dāng)x=1時,F(xiàn)(x)取得最大值F(1)=0.
∴當(dāng)x≠1時,F(xiàn)(x)<F(1)=0,即f(x)<g(x);
∴當(dāng)x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方.
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈[0,$\frac{π}{2}$],sin x0+cos x0≥2 | B. | ?x∈(3,+∞),x2>2x+1 | ||
C. | ?x0∈R,x02+x0=-1 | D. | ?x∈($\frac{π}{2}$,π),tan x>sin x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com