已知拋物線方程為y2=4x,直線l的方程為x-y+5=0,在拋物線上有一動點P到y軸的距離為d1,到直線l的距離為d2,則d1+d2的最小值為________.
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2分別是橢圓=1的左、右焦點,點P在橢圓上,若△PF1F2為直角三角形,則△PF1F2的面積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點(4,-).點M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:=0;
(3)求△F1MF2面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)動點P在直線x-1=0上,O為坐標原點,以OP為直角邊,點O為直角頂點作等腰直角三角形OPQ,則動點Q的軌跡是( )
A.橢圓 B.兩條平行直線
C.拋物線 D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知真命題:若A為⊙O內(nèi)一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是以O,A為焦點,OB長為長軸長的橢圓.類比此命題,寫出另一個真命題:若A為⊙O外一定點,B為⊙O上一動點,線段AB的垂直平分線交直線OB于點P,則點P的軌跡是__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y軸的距離的差等于1.
(1)求動點P的軌跡C的方程;
(2)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3, 6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b2012是數(shù)列{an}中的第 項;
(2)b2k-1= .(用k表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com