12.已知數(shù)列{xn}滿足xn-1-xn=d(n∈N*,n≥2,d為常數(shù)),且x1+x2+…+x20=200,則x5+x16=( 。
A.10B.20C.30D.40

分析 根據(jù)數(shù)列{xn}滿足xn-xn-1=d,得到此數(shù)列為等差數(shù)列,由x1+x2+…+x20=80,利用等差數(shù)列的前n項(xiàng)和公式表示出前20項(xiàng)的和等于80,根據(jù)等差數(shù)列的性質(zhì)可知項(xiàng)數(shù)之和相等的兩項(xiàng)之和相等,得到10(x5+x16)等于80,即可求出x5+x16的值.

解答 解:根據(jù)題意可知數(shù)列{xn}為等差數(shù)列,
則x1+x2+…+x20=$\frac{20({x}_{1}+{x}_{20})}{2}$=10(x1+x20)=10(x5+x16)=200,
所以x5+x16=20.
故選:B.

點(diǎn)評(píng) 此題考查學(xué)生掌握數(shù)列為等差數(shù)列的確定方法,靈活運(yùn)用等差數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知p:?x∈R,sinx+2cosx=3,q:?x∈R,4x+2x+1+1>0,則下列命題中真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知i1=i,i2=-1,i3=-i,i4=1,i5=i,由此可猜想i2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式中前三項(xiàng)系數(shù)成等差數(shù)列.求:
(1)展開式中含x的一次冪的項(xiàng);
(2)展開式中所有x的有理項(xiàng);
(3)展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.與圓C1:(x+3)2+y2=1,圓C2:(x-3)2+y2=9同時(shí)外切的動(dòng)圓圓心的軌跡方程是( 。
A.$\frac{y^2}{8}$-x2=1B.x2-$\frac{y^2}{8}$=1C.x2-$\frac{y^2}{8}$=1(x≥1)D.x2-$\frac{y^2}{8}$=1(x≤-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且∠A=60°,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某城市理論預(yù)測(cè)2020年到2024年人口總數(shù)與年份的關(guān)系如表所示
年份x(年)  0  1  2  3  4
人口數(shù)y(十萬(wàn))  5  7  81119
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)據(jù)此估計(jì)2025年該城市人口總數(shù).
參考公式:用最小二乘法求線性回歸方程系數(shù)公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}1+|lg(x-1)|,x>1\\ g(x),x<1\end{array}$的圖象關(guān)于點(diǎn)P對(duì)稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
①點(diǎn)P的坐標(biāo)為(1,1);
②當(dāng)x∈(-∞,0)時(shí),g(x)≤-1恒成立;
③關(guān)于x的方程f(x)=a,a∈R有且只有兩個(gè)實(shí)根,
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{2x+y-4≥0}\\{y≤2}\end{array}\right.$,則$\frac{y}{x+1}$的取值范圍是( 。
A.[$\frac{2}{5}$,1]B.[$\frac{2}{3}$,1]C.[$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{2}{5}$,$\frac{2}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案