14.已知數(shù)列{an}的前n項和為Sn,滿足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)證明:{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和為Sn

分析 (I)Sn+1=Sn+4an+3,可得an+1=4an+3,變形為:an+1+1=4(an+1),利用等比數(shù)列的定義即可證明.
(II)由(I)可得:an+1=$\frac{4}{3}$×4n-1,即an=$\frac{1}{3}×{4}^{n}$-1.再利用等比數(shù)列的前n項和公式即可得出.

解答 I)證明:∵Sn+1=Sn+4an+3,∴an+1=4an+3,變形為:an+1+1=4(an+1),
∴{an+1}是等比數(shù)列,首項為$\frac{4}{3}$,公比為4;
(II)解:由(I)可得:an+1=$\frac{4}{3}$×4n-1,∴an=$\frac{1}{3}×{4}^{n}$-1.
∴數(shù)列{an}的前n項和為Sn=$\frac{1}{3}×\frac{4({4}^{n}-1)}{4-1}$-n=$\frac{{4}^{n+1}-4}{9}$-n.

點評 本題考查了等比數(shù)列的定義通項公式及其前n項和公式、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為迎接2016年“猴”年的到來,某電視臺舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項,問題B有四個選項,每題只有一個選項是正確的,正確回答問題A可獲獎金1千元,正確回答問題B可獲獎金2千元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設(shè)某參與者在回答問題前,選擇每道題的每個選項的機會是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,當0≤m<n<3時,有f(m)=f(n),則nf(m)的取值范圍是( 。
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=2i(1-i)(i為虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則$z+\overline{z}$=( 。
A.4iB.-4iC.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知如圖,△ABC中,AD是BC邊的中線,∠BAC=120°,且$\overrightarrow{AB}•\overrightarrow{AC}$=-$\frac{15}{2}$.
(Ⅰ)求△ABC的面積;
(Ⅱ)若AB=5,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,則目標函數(shù)z=x-2y的最小值是( 。
A.-5B.$-\frac{3}{2}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),且f(x-1)為偶函數(shù),當x∈[0,1]時,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三個零點,則實數(shù)b的取值范圍是(  )
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四個相異的實數(shù)根,則a的取值范圍是($\frac{{e}^{2}-1}{2e-1}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線x2=8y與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線交于點A,若點A到拋物線的準線的距離為4,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

同步練習冊答案