3.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四個(gè)相異的實(shí)數(shù)根,則a的取值范圍是($\frac{{e}^{2}-1}{2e-1}$,+∞).

分析 將函數(shù)f(x)表示為分段函數(shù)形式,判斷函數(shù)的單調(diào)性和極值,利用換元法將方程轉(zhuǎn)化為一元二次方程,利用一元二次函數(shù)根與系數(shù)之間的關(guān)系進(jìn)行求解即可.

解答 解:當(dāng)x>0時(shí),f(x)=$\frac{{e}^{x}}{x}$,函數(shù)的導(dǎo)數(shù)f′(x)=$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
當(dāng)x>1時(shí),f′(x)>0,當(dāng)0<x<1時(shí),f′(x)<0,則當(dāng)x=1時(shí) 函數(shù)取得極小值f(1)=e,
當(dāng)x<0時(shí),f(x)=-$\frac{{e}^{x}}{x}$,函數(shù)的導(dǎo)數(shù)f′(x)=-$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,此時(shí)f′(x)>0恒成立,
此時(shí)函數(shù)為增函數(shù),
作出函數(shù)f(x)的圖象如圖:
設(shè)t=f(x),則t>e時(shí),t=f(x)有3個(gè)根,
當(dāng)t=e時(shí),t=f(x)有2個(gè)根
當(dāng)0<t<e時(shí),t=f(x)有1個(gè)根,
當(dāng)t≤0時(shí),t=f(x)有0個(gè)根,
則f2(x)-2af(x)+a-1=0(m∈R)有四個(gè)相異的實(shí)數(shù)根,
等價(jià)為t2-2at+a-1=0(m∈R)有2個(gè)相異的實(shí)數(shù)根,
其中0<t<e,t>e,
設(shè)h(t)=t2-2at+a-1,
則$\left\{\begin{array}{l}{h(0)>0}\\{h(e)<0}\\{-\frac{-2a}{2}=a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1>0}\\{{e}^{2}-2ae+a-1<0}\\{a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a>\frac{{e}^{2}-1}{2e-1}}\end{array}\right.$,
即a>$\frac{{e}^{2}-1}{2e-1}$,
故答案為:($\frac{{e}^{2}-1}{2e-1}$,+∞)

點(diǎn)評 本題主要考查函數(shù)與方程的應(yīng)用,利用換元法轉(zhuǎn)化為一元二次函數(shù),利用數(shù)形結(jié)合以及根與系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,且a2=-2,則a7=( 。
A.16B.32C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)證明:{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)之積為Tn,若T=${2}^{{n}^{2}-n}$,則數(shù)列{$\frac{{a}_{n}+63}{{2}^{n-1}}$}中最小項(xiàng)的序號n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:若方程x2+y2+2mx-2y+2m=0表示圓,則實(shí)數(shù)m≠1;
命題q:若以原點(diǎn)為對稱中心,坐標(biāo)軸為對稱軸的雙曲線的一條漸近線與直線2x-y+1=0平行,則雙曲線的離心率等于$\sqrt{5}$,下列命題真確的是( 。
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x-1,x<0}\\{-{e}^{x}-x,x≥0}\end{array}\right.$若關(guān)于x的方程f(x)+m=0有3個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A.(1,3)B.(-3,-1)C.(1,5)D.(-5,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某小組共有13人,其中男生8人,女生5人,從中選出3人,要求至多有2名男生,則不同的選法共有(  )
A.140種B.150種C.220種D.230種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=x+$\frac{4}{x}$,則下列結(jié)論正確的是( 。
A.f(x)的最小值為4
B.f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增
C.f(x)的最大值為4
D.f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊答案