已知a、b、c為正數(shù),且a+b+c=1.求ab2c3最大值為
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:綜合題,不等式的解法及應(yīng)用
分析:由a、b、c為正數(shù),且a+b+c=1,可得a+
1
2
b+
1
2
b+
1
3
c+
1
3
c+
1
3
c=1≥6
6
1
108
ab2c3
(a=
1
2
b=
1
3
c時(shí)取等號(hào)),即可求出ab2c3最大值.
解答: 解:∵a、b、c為正數(shù),且a+b+c=1,
∴a+
1
2
b+
1
2
b+
1
3
c+
1
3
c+
1
3
c=1≥6
6
1
108
ab2c3
(a=
1
2
b=
1
3
c時(shí)取等號(hào)),
∴ab2c3
1
432
,
∴ab2c3最大值為
1
432

故答案為:
1
432
點(diǎn)評(píng):本題考查函數(shù)的最值,考查基本不等式的運(yùn)用,正確運(yùn)用基本不等式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的奇函數(shù)f(x),對(duì)任意實(shí)數(shù)x都有f(
3
4
+x)=f(
3
4
-x),且滿足f(1)>-2,f(2)=m-
3
m
,則實(shí)數(shù)m的取值范圍是( 。
A、-1<m<3
B、0<m<3
C、0<m<3或m<-1
D、m>3或m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

大學(xué)畢業(yè)的小張到甲、乙、丙三個(gè)不同的單位應(yīng)聘,各單位是否錄用他相互獨(dú)立,其被錄用的概率分別為
4
5
、
3
4
2
3
(允許小張被多個(gè)單位同時(shí)錄用)
(1)小張沒有被錄用的概率;
(2)設(shè)錄用小張的單位個(gè)數(shù)為ξ,求ξ的分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+2a)|x-a|+x,a∈R.
(1)當(dāng)a=0時(shí),判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若對(duì)任意的x∈[-2,2],函數(shù)f(x)圖象恒在函數(shù)g(x)=(2a+1)x+4a2的圖象的下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|(0<a<1)
(1)若|m|<2,使得函數(shù)h(x)=f(x)-m有2個(gè)不同零點(diǎn)的概率是
 
;
(2)若方程[f(x)]2+b[f(x)]+c=0有3個(gè)不同的根,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上遞增的函數(shù)為(  )
A、y=x3
B、y=|log2x|
C、y=-x2
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(m-2)x2+(m-2)x+1>0解是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2•an(n∈N*),且a1=
1
2

(1)求a2,a3,a4的值;
(2)猜想an的表達(dá)式(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)?x,y∈R,函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,f(1)=a(a為大于0的常數(shù)),已知an=f(n)(n∈N*),則下列結(jié)論一定正確的是(  )
A、數(shù)列{lgan}為等差數(shù)列
B、數(shù)列{lgan}為等比數(shù)列
C、數(shù)列{e an}為等差數(shù)列
D、數(shù)列{e an}為等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案