11.如果角α的終邊經(jīng)過點(diǎn)P(sin780°,cos(-330°)),則sinα=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

分析 求出角α的終邊經(jīng)過點(diǎn)P的最簡形式,然后求解sinα.

解答 解:角α的終邊經(jīng)過點(diǎn)P(sin780°,cos(-330°)),
則P(sin60°,cos30°),即P($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$),
角α的終邊為第一象限角的平分線,
sinα=$\frac{\sqrt{2}}{2}$.
故選:C.

點(diǎn)評 本題考查誘導(dǎo)公式以及三角函數(shù)定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在R上定義運(yùn)算?:x?y=x(1-y),要使不等式(x-a)?(x+a)>1成立,則實(shí)數(shù)a的取值范圍是(  )
A.-1<a<1B.0<a<2C.$a<-\frac{1}{2}$或$a>\frac{3}{2}$D.$-\frac{1}{2}<a<\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+1=sinan(n∈N*),則下列的說法中,正確的是( 。
A.{an}是單調(diào)遞減數(shù)列B.{an}是單調(diào)遞增數(shù)列
C.{an}是周期數(shù)列D.{an}是常數(shù)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三棱柱ABC-A′B′C′中,M,N分別為BC,B′C′的中點(diǎn),化簡下列式子:
(1)$\overrightarrow{AM}$+$\overrightarrow{BN}$;
(2)$\overrightarrow{A′N}$-$\overrightarrow{MC′}$+$\overrightarrow{BB′}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐A-BCD的每個(gè)面都是正三角形,M,N分別是AB,CD的中點(diǎn),$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{BD}$=$\overrightarrow{c}$,則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{c}$-$\overrightarrow$)C.$\frac{1}{2}$($\overrightarrow$+$\overrightarrow{c}$-$\overrightarrow{a}$)D.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)y=a-bcosx(b>0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$,求函數(shù)y=-2asinbx的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a,b均為大于1的實(shí)數(shù).則2${\;}^{lo{g}_{a}b}$+4${\;}^{lo{g}_a}$的最小值為${2}^{\sqrt{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有一動(dòng)圓P恒過定點(diǎn)F(1,0)且與y軸相交于點(diǎn)A、B,若△ABP為正角形,則圓心P的軌跡方程是( 。
A.$\frac{{(x+3)}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{(x+3)}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{(x-3)}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{(x-3)}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=4x2-4ax+a2-2a+2.
(1)若函數(shù)在區(qū)間[2,4]為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在[0,2]上的最小值為2,求實(shí)數(shù)a的取值.

查看答案和解析>>

同步練習(xí)冊答案