【題目】在直角坐標系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線 的極坐標方程為 .

1)求直線和曲線的普通方程;

2)已知點,且直線和曲線交于兩點,求 的值

【答案】(1),;(2

【解析】

1)消去曲線C中的參數(shù)可得C的普通方程,利用極坐標與直角坐標的互化公式可得直線的普通方程.

2)由直線的普通方程可知直線P,寫出直線的參數(shù)方程,與曲線C的普通方程聯(lián)立,利用直線參數(shù)的幾何意義及韋達定理可得結(jié)果.

1)因為曲線 的參數(shù)方程為 為參數(shù)),所以消去參數(shù)

得曲線的普通方程為

因為直線 的極坐標方程為 ,即

所以直線的普通方程為

2)因為直線經(jīng)過點 ,所以得到直線的參數(shù)方程為 為參數(shù))

,

把直線的參數(shù)方程代入曲線的普通方程,得,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)是定義在上的奇函數(shù),且當時,.

(Ⅰ)若,求函數(shù)的解析式;

(Ⅱ)若,方程至少有兩個不等的解,求的取值集合;

(Ⅲ)若函數(shù)上的單調(diào)減函數(shù),

①求的取值范圍;

②若不等式成立,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市實施全域旅游,將鄉(xiāng)村旅游公路建設與特色田園鄉(xiāng)村發(fā)展結(jié)合,精心打造全長365公里的“1號公路,對內(nèi)串聯(lián)區(qū)域內(nèi)主要景區(qū)景點和自然村,對外通達周邊縣(市),以路引景、為景串線,形成一個大環(huán)小圈、內(nèi)連外引的路網(wǎng)體系.如今的“1號公路,不僅成為該市旅游業(yè)的顏值擔當,更成為推動鄉(xiāng)村振興的實力擔當,農(nóng)村居住環(huán)境日益改善,新農(nóng)村別墅隨處可見.圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面是全等的等腰梯形,左右兩坡屋面是全等的三角形.在平面上的射影分別為(即:平面,垂足為;,垂足為.已知,梯形的面積是面積的2.2..

1)當時,求屋頂面積的大;

2)求屋頂面積關于的函數(shù)關系式;

3)已知上部屋頂造價與屋頂面積成正比,比例系數(shù)為為正的常數(shù)),下部主體造價與其高度成正比,比例系數(shù)為.現(xiàn)欲造一棟上、下總高度為的別墅,試問:當為何值時,總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),.

(1)若的圖象在處的切線恰好也是圖象的切線.

①求實數(shù)的值;

②若方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

(2)當時,求證:對于區(qū)間上的任意兩個不相等的實數(shù), ,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的單調(diào)遞增區(qū)間;

(2)證明:當時,有兩個零點;

(3)若,函數(shù)處取得最小值,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知,用分析法證明: ;

(2)已知, ,用反證法證明: 都大于零.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函數(shù).

1)求實數(shù)k的值;

2)求函數(shù)gx)的定義域;

(3)若函數(shù)fx)與gx)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內(nèi)的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關指數(shù)越接近于1,表示回歸效果越好;

②兩個變量相關性越強,則相關系數(shù)r就越接近于1;

③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;

④兩個模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線恒過樣本點的中心,且至少過一個樣本點;

⑥若的觀測值滿足≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病;

⑦從統(tǒng)計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________

查看答案和解析>>

同步練習冊答案