(本小題滿分12分)
已知數(shù)列中,,,且.
(1)設(shè),求是的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;
(3)若是與的等差中項(xiàng),求的值,并證明:對(duì)任意的,是與的等差中項(xiàng).
(1)
(2)
(3)證明三項(xiàng)構(gòu)成等差中項(xiàng)的性質(zhì),只要利用等差中項(xiàng)的性質(zhì)分析可得。
解析試題分析:(1)證明:由題,得,
,.又,,
所以是首項(xiàng)為1,公比為的等比數(shù)列.
(2)解:由(Ⅰ),,,……,.
將以上各式相加,得.
所以當(dāng)時(shí),
上式對(duì)顯然成立.
(3)解:由(Ⅱ),當(dāng)時(shí),顯然不是與的等差中項(xiàng),故.
由可得,由得 , ①
.于是.
另一方面,
,.
由①可得.
所以對(duì)任意的,是與的等差中項(xiàng).
考點(diǎn):數(shù)列的通項(xiàng)公式
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于數(shù)列的公式的熟練運(yùn)用,等比數(shù)列和累加法思想的運(yùn)用,屬于中檔題。易錯(cuò)點(diǎn)是對(duì)于公比的討論容易忽略。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前項(xiàng)和為(為常數(shù),N*).
(1)求,,;
(2)若數(shù)列{}為等比數(shù)列,求常數(shù)的值及;
(3)對(duì)于(2)中的,記,若對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{}是等差數(shù)列,,時(shí),若自然數(shù)滿足,使得成等比數(shù)列,(1)求數(shù)列{}的通項(xiàng)公式;(2)求數(shù)列的通項(xiàng)公式及其前n項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知等差數(shù)列,(),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類比上述性質(zhì),寫出一個(gè)真命題并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)數(shù)列的前項(xiàng)的和為,對(duì)于任意的自然數(shù),
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求通項(xiàng)公式
(Ⅱ)設(shè),求和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足且,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1= (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N*,點(diǎn)Pn都在(1)中的直線l上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將數(shù)列的各項(xiàng)按照第1行排,第2行自左至右排,第3行…的規(guī)律,排成如圖所示的三角形形狀.
(Ⅰ)若數(shù)列是首項(xiàng)為1,公差為3的等差數(shù)列,寫出圖中第五行第五個(gè)數(shù);
(Ⅱ)若函數(shù)且,求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)為圖中第行所有項(xiàng)的和,在(Ⅱ)的條件下,用含的代數(shù)式表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com