6.(1)已知0<x<1,求y=x(x-3x)的最大值;
(2)已知x>0,y>0,且5x+7y=20,求xy的最大值.

分析 (1)由0<x<1,可得3-3x>0,即有y=x(3-3x)=3x(1-x),運用基本不等式的變形:ab≤($\frac{a+b}{2}$)2,可得最大值;
(2)運用基本不等式計算,即可得到所求xy的最大值.

解答 解:(1)由0<x<1,可得3-3x>0,
即有y=x(3-3x)=3x(1-x)≤3•($\frac{x+1-x}{2}$)2=$\frac{3}{4}$.
當(dāng)且僅當(dāng)x=1-x,即x=$\frac{1}{2}$時,函數(shù)y取得最大值$\frac{3}{4}$;
(2)x>0,y>0,且5x+7y=20,
可得5x+7y≥2$\sqrt{35xy}$,
即為20≥2$\sqrt{35xy}$,
解得xy≤$\frac{20}{7}$,
當(dāng)且僅當(dāng)5x=7y=10,即x=2,y=$\frac{10}{7}$時,xy取得最大值$\frac{20}{7}$.

點評 本題考查最值的求法,注意運用基本不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題“存在x0∈Z,使2x0+x0+1≤0”的否定是(  )
A.存在x0∈Z,使2x0+x0+1<0B.不存在x0∈Z,使2x0+x0+1>0
C.對任意x∈Z,使2x+x+1≤0D.對任意x∈Z,使2x+x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知球內(nèi)接圓錐的側(cè)面積為9$\sqrt{10}$π,體積為27π,則該球的體積為( 。
A.$\frac{500π}{3}$B.500πC.100πD.$\frac{125π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:實數(shù)x滿足$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}(x+2)>-3}\\{{x^2}≤2x+15}\end{array}}$,已知命題q:實數(shù)x滿足($\frac{1}{2}$)(x-2)(x-3a-1)>1.
(1)當(dāng)q為真命題時,不等式的解集記為A,求A;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在(0,1)內(nèi)隨機取數(shù)x,則事件“4x-1>0”發(fā)生的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若|z-3-4i|≤2,則|z|的最大值是(  )
A..   9B.7C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.聯(lián)歡會有歌曲節(jié)目4個,舞蹈節(jié)目2個,小品節(jié)目2個,其中小品節(jié)目不能連著演出,舞蹈必須在開頭和結(jié)尾,有多少種不同的出場順序( 。
A.480B.960C.720D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用反證法證明命題:“$\sqrt{2}$不是有理數(shù)”時應(yīng)假設(shè)$\sqrt{2}$是有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點.
(1)若直線l過焦點F,且與拋物線C交于A,B兩點,若F是AB的一個靠近點B的三等分點,且點B的橫坐標(biāo)為1,弦長AB=9時,求拋物線C的方程;
(2)在(1)的條件下,若M是拋物線C上位于曲線AOB(O為坐標(biāo)原點,不含端點A,B)上的一點,求△ABM的最大面積.

查看答案和解析>>

同步練習(xí)冊答案