16.命題“存在x0∈Z,使2x0+x0+1≤0”的否定是( 。
A.存在x0∈Z,使2x0+x0+1<0B.不存在x0∈Z,使2x0+x0+1>0
C.對任意x∈Z,使2x+x+1≤0D.對任意x∈Z,使2x+x+1>0

分析 直接利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以命題“存在x0∈Z,使2x0+x0+1≤0”的否定是:對任意x∈Z,使2x+x+1>0.
故選:D.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=ax2+bx+c(a≠0)經(jīng)過點(-1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若數(shù)列{an}的前n項和Sn滿足Sn=f(n),求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.一邊長為3的正三角形的三個頂點都在球O的表面上,若球心O到此正三角形所在的平面的距離為$\sqrt{7}$,則球O的表面積為40π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}a-|x-a|,x≥0\\|x+a|-a,x<0\end{array}$,其中常數(shù)a>0,給出下列結(jié)論:
①f(x)是R上的奇函數(shù);
②當a≥4時,f(x-a2)≥f(x)對任意的x∈R恒成立;
③f(x)的圖象關(guān)于x=a和x=-a對稱;
④若對?x1∈(-∞,-2),?x2∈(-∞,-1),使得f(x1)f(x2)=1,則a∈($\frac{1}{2}$,1).
其中正確的結(jié)論有①.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復(fù)數(shù)z=$\frac{2i}{1+i}$,$\overline{z}$為復(fù)數(shù)z的共軛復(fù)數(shù),則|$\overline{z}$|等于( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,則|QF|=$\frac{8}{3}$,點Q的坐標為($\frac{2}{3}$,±$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知a>0且a≠1,函數(shù)f(x)=$\frac{5{a}^{x}+3}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-$\frac{1}{4}$≤x≤$\frac{1}{4}$,則函數(shù)f(x)的最大值與最小值之和為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列說法中正確的個數(shù)為(  )個
①在對分類變量X和Y進行獨立性檢驗時,隨機變量K2的觀測值k越大,則“X與Y相關(guān)”可信程度越;
②在回歸直線方程$\stackrel{∧}{y}$=0.1x=10中,當解釋變量x每增加一個單位時,預(yù)報變量$\stackrel{∧}{y}$增加0.1個單位;
③兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1;
④在回歸分析模型中,若相關(guān)指數(shù)R2越大,則殘差平方和越小,模型的擬合效果越好.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)已知0<x<1,求y=x(x-3x)的最大值;
(2)已知x>0,y>0,且5x+7y=20,求xy的最大值.

查看答案和解析>>

同步練習冊答案