如圖,E、F分別為正方體的面ADD1A1、面BCC1B1的中心,則四邊形BFD1E在該正方體的面上的射影可能是       .

 
2,3
解:因?yàn)檎襟w是對(duì)稱的幾何體,
所以四邊形BFD1E在該正方體的面上的射影可分為:自上而下、自左至右、由前及后三個(gè)方向的射影,
也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.四邊形BFD1E在面ABCD和面ABB1A1上的射影相同,如圖②所示;
四邊形BFD1E在該正方體對(duì)角面的ABC1D1內(nèi),它在面ADD1A1上的射影顯然是一條線段,如圖③所示.
故②③正確
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,的中點(diǎn),
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E
與直線AA1的交點(diǎn)。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點(diǎn)在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當(dāng)為何值時(shí),∥平面?證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖所示,正三棱錐中,分別是 的中點(diǎn),上任意一點(diǎn),則直線所成的角的大小是(  。
A.B.
C.D.隨點(diǎn)的變化而變化。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是                              (  )
A.三點(diǎn)確定一個(gè)平面B.經(jīng)過一條直線和一個(gè)點(diǎn)確定一個(gè)平面
C.四邊形確定一個(gè)平面D.兩條相交直線確定一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知梯形中,,,、分別是上的點(diǎn),,的中點(diǎn).沿將梯形翻折,使平面⊥平面 (如圖).


(I)當(dāng)時(shí),求證: ;
(II)若以、、為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(III)當(dāng)取得最大值時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個(gè)簡(jiǎn)單空間幾何體的三視圖其主視圖與左視圖都是邊長(zhǎng)為的正三角形,其俯視圖輪廓為正方形,則其體積是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E、F分別為棱BC、AD的中點(diǎn).

(Ⅰ)若PD=1,求異面直線PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案