16.設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是(  )
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

分析 設g(x)=ex(2x-1),y=ax-a,問題轉(zhuǎn)化為存在唯一的整數(shù)x0使得g(x0)在直線y=ax-a的下方,求導數(shù)可得函數(shù)的極值,數(shù)形結(jié)合可得-a>g(0)=-1且g(-1)=-3e-1≥-a-a,解關于a的不等式組可得.

解答 解:設g(x)=ex(2x-1),y=ax-a,
由題意知存在唯一的整數(shù)x0使得g(x0)在直線y=ax-a的下方,
∵g′(x)=ex(2x-1)+2ex=ex(2x+1),
∴當x<-$\frac{1}{2}$時,g′(x)<0,當x>-$\frac{1}{2}$時,g′(x)>0,
∴當x=-$\frac{1}{2}$時,g(x)取最小值-2${e}^{-\frac{1}{2}}$,
當x=0時,g(0)=-1,當x=1時,g(1)=e>0,
直線y=ax-a恒過定點(1,0)且斜率為a,
故-a>g(0)=-1且g(-1)=-3e-1≥-a-a,解得$\frac{3}{2e}$≤a<1
故選:D

點評 本題考查導數(shù)和極值,涉及數(shù)形結(jié)合和轉(zhuǎn)化的思想,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.若a=log43,則2a+2-a=$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C的極坐標方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)-4=0,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ax}{{{{(x+r)}^2}}}$(a>0,r>0)
(1)求f(x)的定義域,并討論f(x)的單調(diào)性;
(2)若$\frac{a}{r}$=400,求f(x)在(0,+∞)內(nèi)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直角坐標系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求C1,C2的極坐標方程;
(Ⅱ)若直線C3的極坐標方程為θ=$\frac{π}{4}$(ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設x∈R,定義符號函數(shù)sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則(  )
A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=f(x)-g(x)恰有4個零點,則b的取值范圍是( 。
A.($\frac{7}{4}$,+∞)B.(-∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,B=120°,AB=$\sqrt{2}$,A的角平分線AD=$\sqrt{3}$,則AC=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率是$\frac{{\sqrt{2}}}{2}$,點P(0,1)在短軸CD上,且$\overrightarrow{PC}$•$\overrightarrow{PD}$=-1
(Ⅰ)求橢圓E的方程;
(Ⅱ)設O為坐標原點,過點P的動直線與橢圓交于A、B兩點.是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案