8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=f(x)-g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是( 。
A.($\frac{7}{4}$,+∞)B.(-∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

分析 求出函數(shù)y=f(x)-g(x)的表達(dá)式,構(gòu)造函數(shù)h(x)=f(x)+f(2-x),作出函數(shù)h(x)的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:∵g(x)=b-f(2-x),
∴y=f(x)-g(x)=f(x)-b+f(2-x),
由f(x)-b+f(2-x)=0,得f(x)+f(2-x)=b,
設(shè)h(x)=f(x)+f(2-x),
若x≤0,則-x≥0,2-x≥2,
則h(x)=f(x)+f(2-x)=2+x+x2,
若0≤x≤2,則-2≤-x≤0,0≤2-x≤2,
則h(x)=f(x)+f(2-x)=2-x+2-|2-x|=2-x+2-2+x=2,
若x>2,-x<-2,2-x<0,
則h(x)=f(x)+f(2-x)=(x-2)2+2-|2-x|=x2-5x+8.
即h(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,}&{x≤0}\\{2,}&{0<x≤2}\\{{x}^{2}-5x+8,}&{x>2}\end{array}\right.$,
作出函數(shù)h(x)的圖象如圖:
當(dāng)x≤0時(shí),h(x)=2+x+x2=(x+$\frac{1}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
當(dāng)x>2時(shí),h(x)=x2-5x+8=(x-$\frac{5}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
故當(dāng)b=$\frac{7}{4}$時(shí),h(x)=b,有兩個(gè)交點(diǎn),
當(dāng)b=2時(shí),h(x)=b,有無(wú)數(shù)個(gè)交點(diǎn),
由圖象知要使函數(shù)y=f(x)-g(x)恰有4個(gè)零點(diǎn),
即h(x)=b恰有4個(gè)根,
則滿足$\frac{7}{4}$<b<2,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,根據(jù)條件求出函數(shù)的解析式,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,⊙C的極坐標(biāo)方程為ρ=2$\sqrt{3}$sinθ.
(Ⅰ)寫(xiě)出⊙C的直角坐標(biāo)方程;
(Ⅱ)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.根據(jù)如圖給出的2004年至2013年我國(guó)二氧化硫年排放量(單位:萬(wàn)噸)柱形圖,以下結(jié)論中不正確的是(  )
A.逐年比較,2008年減少二氧化硫排放量的效果最顯著
B.2007年我國(guó)治理二氧化硫排放顯現(xiàn)成效
C.2006年以來(lái)我國(guó)二氧化硫年排放量呈減少趨勢(shì)
D.2006年以來(lái)我國(guó)二氧化硫年排放量與年份正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是(  )
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.a(chǎn)為實(shí)數(shù),函數(shù)f(x)=|x2-ax|在區(qū)間[0,1]上的最大值記為g(a).當(dāng)a=2$\sqrt{2}$-2時(shí),g(a)的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知${\overrightarrow e_1},{\overrightarrow e_2}$是空間單位向量,${\overrightarrow e_1}•{\overrightarrow e_2}=\frac{1}{2}$,若空間向量$\overrightarrow b$滿足$\overrightarrow b•{\overrightarrow e_1}=2,\overrightarrow b•{\overrightarrow e_2}=\frac{5}{2}$,且對(duì)于任意x,y∈R,$|{\overrightarrow b-(x\overrightarrow{e_1}+y\overrightarrow{e_2})}|≥|{\overrightarrow b-({x_0}\overrightarrow{e_1}+{y_0}\overrightarrow{e_2})}|$=1(x0,y0∈R),則x0=1,y0=2,$|{\overrightarrow b}$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸出k的值為8,則判斷框圖可填入的條件是( 。
A.s≤$\frac{3}{4}$B.s≤$\frac{5}{6}$C.s≤$\frac{11}{12}$D.s≤$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=log2(x2+2x-3)的定義域是(  )
A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(Ⅰ)求fn′(2);
(Ⅱ)證明:fn(x)在(0,$\frac{2}{3}$)內(nèi)有且僅有一個(gè)零點(diǎn)(記為an),且0<an-$\frac{1}{2}$<$\frac{1}{3}$($\frac{2}{3}$)n

查看答案和解析>>

同步練習(xí)冊(cè)答案