分析 利用已知條件求出A,C,然后利用正弦定理求出AC即可.
解答 解:由題意以及正弦定理可知:$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,即$\frac{\sqrt{2}}{sin∠ADB}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$,∠ADB=45°,
$\frac{1}{2}$A=180°-120°-45°,可得A=30°,則C=30°,三角形ABC是等腰三角形,
AC=2$\sqrt{2}sin60°$=$\sqrt{6}$.
故答案為:$\sqrt{6}$.
點評 本題考查正弦定理以及余弦定理的應用,三角形的解法,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$-\frac{3}{2e},1$) | B. | [$-\frac{3}{2e},\frac{3}{4}$) | C. | [$\frac{3}{2e},\frac{3}{4}$) | D. | [$\frac{3}{2e},1$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | s≤$\frac{3}{4}$ | B. | s≤$\frac{5}{6}$ | C. | s≤$\frac{11}{12}$ | D. | s≤$\frac{25}{24}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,1] | B. | (-3,1) | C. | (-∞,-3]∪[1,+∞) | D. | (-∞,-3)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組號 | 分組 | 頻數(shù) |
1 | [4,5) | 2 |
2 | [5,6) | 8 |
3 | [6,7) | 7 |
4 | [7,8] | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com