5.已知(1+x)n的展開式中,第3項(xiàng)系數(shù)為21,則自然數(shù)n=7.

分析 根據(jù)(1+x)n展開式的第3項(xiàng)系數(shù)為21,列出方程求出自然數(shù)n的值.

解答 解:(1+x)n的展開式中,第3項(xiàng)系數(shù)為
${C}_{n}^{2}$=21,
即$\frac{1}{2}$n(n-1)=21,
整理得n2-n-42=0,
解答n=7或n=-6(不合題意,舍去),
所以自然數(shù)n=7.
故答案為:7.

點(diǎn)評(píng) 本題考查了二項(xiàng)展開式各項(xiàng)系數(shù)的特征與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)A={1≤x≤2},B={x|x≤a},且A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若|$\overrightarrow$|=$\sqrt{2}$|$\overrightarrow{a}$|≠0,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$之間的夾角為( 。
A.30°B.135°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列說(shuō)法正確的是( 。
A.$\overrightarrow{AB}$∥$\overrightarrow{CD}$就是$\overrightarrow{AB}$所在的直線平行于$\overrightarrow{CD}$所在的直線
B.長(zhǎng)度相等的向量叫相等向量
C.零向量的長(zhǎng)度等于0
D.共線向量是在同一條直線上的向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知α∈(0,$\frac{π}{4}$),β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$.
(1)求tanα;
(2)求2α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.解不等式:1-5x<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“同域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“同域區(qū)間”.給出下列四個(gè)函數(shù):
①f(x)=cos$\frac{π}{2}$x;
②f(x)=x2-1;
③f(x)=|2x-1|;
④f(x)=log2(x-1).
存在“同域區(qū)間”的“同域函數(shù)”的序號(hào)是②③(請(qǐng)寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$,若|$\overrightarrow{a}$|=$\sqrt{2}$,且$\overrightarrow{a}$•$\overrightarrow$=4,則|$\overrightarrow$|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知cosα=$\frac{3}{5}$,α的終邊在第四象限,求sin$\frac{α}{2}$,cos$\frac{α}{2}$,tan$\frac{α}{2}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案