分析 首先將它們中的相關(guān)向量坐標(biāo)化,然后進(jìn)行向量平行、垂直的坐標(biāo)運(yùn)算.
解答 解:因?yàn)?\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),$\overrightarrow{c}$=(4,1),
所以(Ⅰ)$\overrightarrow{a}$+k$\overrightarrow{c}$=(3+4k,2+k),2$\overrightarrow$-$\overrightarrow{a}$=(-5,2),又($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow$-$\overrightarrow{a}$),
所以2(3+4k)+5(2+k)=0,解得k=$-\frac{16}{13}$;
(Ⅱ)$\overrightarrowa7fwzao$=(x,y),且滿足($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow9wk7oym$-$\overrightarrow{c}$),|$\overrightarrowl9mwr2j$-$\overrightarrow{c}$|=$\sqrt{5}$,又$\overrightarrow{a}+\overrightarrow$=(2,4),$\overrightarrowqbwg7fa-\overrightarrow{c}$=(x-4,y-1),
所以$\left\{\begin{array}{l}{2(x-4)+4(y-1)=0}\\{(x-4)^{2}+(y-1)^{2}=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$
所以$\overrightarrow2kftsph$=(6,0)或者(2,2).
點(diǎn)評(píng) 本題考查了平面向量的在必要時(shí)以及向量平行、垂直時(shí)的坐標(biāo)關(guān)系;屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | ($\frac{1}{2}$,1) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a,b,c成等差數(shù)列 | B. | a,c,b成等差數(shù)列 | C. | a,c,b成等比數(shù)列 | D. | a,b,c成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com