△ABC中,D是BC的中點,向△ABC內(nèi)部投一點,那么點落在△ABD內(nèi)的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:欲求的點落在△ABD內(nèi)的概率,則可求出△ABD與△ABC的面積之比,再根據(jù)幾何概型概率公式求解.
解答: 解:因為D是BC的中點,所以S△ABD=
1
2
S△ABC,
所以點落在△ABD內(nèi)的概率為P=
1
2

故答案為:
1
2
點評:本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=
4
5
|PD|,當(dāng)P在圓上運動時,求點M的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次計算機考試按科目A、科目B依次進行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只有一次補考機會,兩個科目均合格方可獲得證書.現(xiàn)某人參加這次考試,已知科目A每次考試成績合格的概率為
4
5
,科目B每次考試成績合格的概率為
3
4
,假設(shè)每次考試合格與否均互不影響.
(1)求他需要參加3次考試才能獲得證書的概率;
(2)在這次考試中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)
a
=(cosx,
1
2
),
b
=(
3
sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
a
b
-
1
2

(Ⅰ)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈(0,
3
)時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2,x≤0
-x,x>0

(1)畫出f(x)的圖象;
(2)根據(jù)圖象寫出f(x)的單調(diào)性(不用證明);
(3)利用(2)的結(jié)論解不等式f(x2-4)>f(3x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的方程為y-a=(a-1)(x+2),若直線l在y軸上的截距為6,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,g(x)=(
1
2
x-m,若對任意x∈[0,2],恒有f(x)≥g(x),則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(4,1)的圓C與直線x-y-1=0相切于點B(2,1),則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:eln2+lg22+lg2lg5+lg5=
 

查看答案和解析>>

同步練習(xí)冊答案