12.已知函數(shù)f(x)=($\frac{1}{3}$)x,關(guān)于x的不等式x2-2x+a<0的解集為(-1,3).
(1)求實(shí)數(shù)a的值;
(2)求不等式f(x2+a)<1的解集.

分析 (1)根據(jù)韋達(dá)定理求出a的值即可;(2)不等式轉(zhuǎn)化為${3}^{3{-x}^{2}}$<1,解出即可.

解答 解:(1)關(guān)于x的不等式x2-2x+a<0的解集為(-1,3).
∴-1×3=a,即a=-3;
(2)由(1)得:f(x2+a)=f(x2-3)=${3}^{3{-x}^{2}}$<1,
即3-x2<0,解得:x>$\sqrt{3}$或x<-$\sqrt{3}$,
∴不等式的解集是(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞).

點(diǎn)評(píng) 本題考查了不等式的解法,考查二次函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x(x∈R),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.長方體長、寬、高分別為2、2、4,則它的體積等于( 。
A.4B.8C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.判斷直線(a-1)x+y+a-3=0與圓x2+y2-4y=0的位置關(guān)系( 。
A.相離B.相交C.相切D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若方程2sin2x+sinx-m-2=0在[0,2π)上有且只有兩解,則實(shí)數(shù)m的取值范圍是(-1,1)∪{-$\frac{17}{8}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.y=[sinx•cos]+[sinx+cosx]的值域?yàn)閧-2,-1,1}([x]表示不超過實(shí)數(shù)x的最大整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=1-4cosx-2sin2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知四邊形ABCD中,|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|=$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-$\sqrt{3}$,向量$\overrightarrow{CA}$+$\overrightarrow{AD}$和$\overrightarrow{AB}$-$\overrightarrow{AC}$的夾角為30°,則|$\overrightarrow{AC}$|的最大值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}的通項(xiàng)公式為an=5n-2n,則a1=3.

查看答案和解析>>

同步練習(xí)冊答案