3.若$cosα=\frac{1}{3}$,且α為第四象限角,求$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$的值.

分析 利用三角函數(shù)的誘導(dǎo)公式化簡,由$cosα=\frac{1}{3}$,且α為第四象限角,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值即可得答案.

解答 解:$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$=$\frac{cosα•(-cosα)•ta{n}^{2}α}{sinα•(-sinα)•(-sinα)}$=$-\frac{1}{sinα}$,
∵$cosα=\frac{1}{3}$,且α為第四象限角,
∴$sinα=-\sqrt{1-co{s}^{2}α}=-\sqrt{1-(\frac{1}{3})^{2}}$=$-\frac{2\sqrt{2}}{3}$.
∴$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$=$-\frac{1}{sinα}$=$\frac{3\sqrt{2}}{4}$.

點(diǎn)評(píng) 本題考查了運(yùn)用誘導(dǎo)公式化簡求值,以及同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.用秦九韶算法求多項(xiàng)式f(x)=x5+4x4+x2+20x+16在x=-2時(shí),v2的值為(  )
A.2B.-4C.4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,原點(diǎn)為O,拋物線C的方程為x2=4y,線段AB是拋物線C的一條動(dòng)弦.
(1)求拋物線C的準(zhǔn)線方程和焦點(diǎn)坐標(biāo)F; 
(2)若$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)a,b∈R,則“a+b>4”是“a>2且b>2”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.lg2+lg5=( 。
A.10B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在菱形ABCD中,AB=2,∠ABC=60°,BD∩AC=O,現(xiàn)將其沿菱形對(duì)角線BD折起得空間四邊形EBCD,使EC=$\sqrt{2}$.
(Ⅰ)求證:EO⊥CD.
(Ⅱ)求點(diǎn)O到平面EDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\overline z=1+i$(i是虛數(shù)單位),則在復(fù)平面內(nèi),${z^-}+\frac{2}{{|{\overline z}|}}$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$z=\frac{i+1}{{-{i^2}-3i}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)f-1(x)為f(x)=$\frac{x}{4}$-$\frac{π}{8}$cosx+$\frac{π}{8}$,x∈(0,π]的反函數(shù),則y=f(x)+f-1(x)的最大值為$\frac{5π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案