17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$.

分析 由題意利用兩個向量的數(shù)量積的定義求得$\overrightarrow{a}•\overrightarrow$的值,再利用求向量的模方法計算求得結果.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,
∴$\overrightarrow{a}•\overrightarrow$=1•3•cos$\frac{2π}{3}$=-$\frac{3}{2}$,
則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$=$\sqrt{1-3+9}$=$\sqrt{7}$,
故答案為:$\sqrt{7}$.

點評 本題主要考查兩個向量的數(shù)量積的定義、求向量的模,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖的框圖是一古代數(shù)學家的一個算法的程序框圖,它輸出的結果S表示( 。
A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值
C.a0+a1x0+a2x02+a3x03的值D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在邊長為1的正方體ABCD-A′B′C′D′中,E,F(xiàn),G分別在BB′,BC,BA上,并且滿足$\overrightarrow{BE}=\frac{3}{4}\overrightarrow{BB'}$,$\overrightarrow{BF}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{BG}=\frac{1}{2}\overrightarrow{BA}$.若平面AB′F,平面ACE,平面B′CG交于一點O,$\overrightarrow{BO}=x\overrightarrow{BG}+y\overrightarrow{BF}+z\overrightarrow{BE}$,則x+y+z=$\frac{4}{3}$,$|\overrightarrow{OD}|$=$\frac{\sqrt{59}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,$\overrightarrow{CB}$•$\overrightarrow{CA}$=6,$\overrightarrow{BC}$•$\overrightarrow{BA}$=7,那么BC=(  )
A.13B.6C.7D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.計算$\lim_{n→∞}\frac{1+2+3+…+n}{{{n^2}+1}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={3,log2(a2+3a)},B={a,b},若A∩B={2},則集合A∪B所有元素的和等于( 。
A.1B.5C.6D.1或6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設隨機變量X~(2,σ2),若P(4-a<X<a)=0.8(a>2),則P(X>a)的值為0.1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,4sinA=5sinB,cos(A-B)=$\frac{31}{32}$,則$\frac{a-b}{a+b}$=$\frac{1}{9}$,cosC=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線l過點A(3,4),且與點B(1,6)的距離最遠,則直線l的方程為(  )
A.x-y+1=0B.x+y+1=0C.x+y-7=0D.x-y-7=0

查看答案和解析>>

同步練習冊答案