18.已知隨機(jī)變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個點(diǎn),則落入陰影部分的點(diǎn)的個數(shù)的估計值為( 。
附:若Z~N(μ,σ2),則 P(μ-σ<Z≤μ+σ)=0.6826;P(μ-2σ<Z≤μ+2σ)=0.9544;P(μ-3σ<Z≤μ+3σ)=0.9974.
A.6038B.6587C.7028D.7539

分析 求出P陰影=P(0<X≤1)=1-$\frac{1}{2}$×0.6826=1-0.3413=0.6587,即可得出結(jié)論.

解答 解:由題意P陰影=P(0<X≤1)=1-$\frac{1}{2}$×0.6826=1-0.3413=0.6587,
則落入陰影部分點(diǎn)的個數(shù)的估計值為10000×0.6587=6587.
故選:B.

點(diǎn)評 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查正態(tài)分布中兩個量μ和σ的應(yīng)用,考查曲線的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2+x-6<0},B={x|3x>1},則A∩(∁RB)=( 。
A.(-3,1]B.(1,2)C.(-3,0]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|x2<2x},B={x|x-1<0},則A∩B=( 。
A.(-∞,-1)B.(-∞,1)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《九章算術(shù)》是我國古代的優(yōu)秀數(shù)學(xué)著作,在人類歷史上第一次提出負(fù)數(shù)的概念,內(nèi)容涉及方程、幾何、數(shù)列、面積、體積的計算等多方面.書的第6卷19題,“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.”如果竹由下往上均勻變細(xì)(各節(jié)容量可視為等差數(shù)列),則中間剩下的兩節(jié)容量是多少升( 。
A.$2\frac{23}{66}$B.$2\frac{3}{22}$C.$2\frac{61}{66}$D.$1\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)畫出函數(shù)y=f(x)在區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若tan(π+θ)=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},則P∩(∁RQ)=( 。
A.[0,3]B.(0,2]C.[0,2)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).以點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)將直線l化為直角坐標(biāo)方程;
(Ⅱ)求曲線C上的一點(diǎn)Q 到直線l 的距離的最大值及此時點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式2x2-x-3>0解集為( 。
A.{x|-1<x<$\frac{3}{2}$}B.{x|x>$\frac{3}{2}$或x<-1}C.{x|-$\frac{3}{2}$<x<1}D.{x|x>1或x<-$\frac{3}{2}$}

查看答案和解析>>

同步練習(xí)冊答案