討論函數(shù)y=-x2+2x+1,x∈(-∞,-1)的單調(diào)性.
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應用
分析:二次函數(shù)的單調(diào)性與其開口方向及對稱軸相關.
解答: 解:∵函數(shù)y=-x2+2x+1的圖象開口向下,且對稱軸為x=1;
則函數(shù)y=-x2+2x+1在(-∞,-1)上單調(diào)遞增.
點評:本題考查了二次函數(shù)的單調(diào)性,與其開口方向及對稱軸相關.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=
1
3
x3+ax2
+5x+6在區(qū)間[1,3]上單調(diào)函數(shù),則實數(shù)a的取值范圍為(  )
A、[-
5
,+∞)
B、(-∞,-3]
C、[-3,
5
]
D、(-∞,-3]∪[-
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知拋物線M的參數(shù)方程為
x=2s
y=2s2
(其中s為參數(shù)),AB為過拋物線的焦點F且垂直于對稱軸的弦,點P在線段AB上.傾斜角為
3
4
π的直線l經(jīng)過點P與拋物線交于C,D兩點.
(1)請問
|PC|•|PD|
|PA|•|PB|
是否為定值,若是,求出該定值;若不是,說明理由;
(2)若△APD和△BPC的面積相等,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知E、F、G、H分別是四面體ABCD的棱AD、CD、BD、BC的中點.求證:AH∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函數(shù)f(x)=
a
b

(1)若x∈[0,
π
2
],求f(x)得最小值.
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-
2a
x
-6lnx在x=2處取得極值.
(1)求實數(shù)a的值;
(2)g(x)=(x-3)ex-m(e為自然對數(shù)的底數(shù)),若存在x1∈(0,2),對任意x2∈[2,3],總有f(x1)-g(x2)≥0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一元二次不等式x2+ax+2a-3>0的解集為R
(1)若實數(shù)a的取值范圍為集合A,求A.
(2)對任意的x∈A,都使得不等式x2+(b-1)x+9≥0恒成立.求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
3
3
,過右焦點F的直線l與C相交于A、B
兩點,當l的斜率為1時,坐標原點O到l的距離為
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin2x,-
3
2
),
b
=(
1
2
,cos2x)設f(x)=2
a
b

(1)求f(x)的最大值,并求最大值所對應的自變量;
(2)令g(x)=
2
π
x2
-x,對任意x1∈[-
π
2
,
π
2
]
,存在x2∈[-
π
2
,
π
2
]
時,使λ•g(x1)=f(x2)成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案