4.定義在(0,+∞)上的函數(shù)f(x)滿足f(x)>0,f'(x)為f(x)的導(dǎo)函數(shù),且2f(x)<xf'(x)<3f(x)對x∈(0,+∞)恒成立,則$\frac{f(2)}{f(3)}$的取值范圍是($\frac{8}{27}$,$\frac{4}{9}$).

分析 分別構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),h(x)=$\frac{f(x)}{{x}^{3}}$,x∈(0,+∞),利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),
g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,
∴f(x)>0,
0<$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∴g′(x)>0,
∴函數(shù)g(x)在x∈(0,+∞)上單調(diào)遞增,
∴g(2)<g(3),即$\frac{f(2)}{4}$<$\frac{f(3)}{9}$,
∴$\frac{f(2)}{f(3)}$<$\frac{4}{9}$①,
令h(x)=$\frac{f(x)}{{x}^{3}}$,x∈(0,+∞),
h′(x)=$\frac{xf′(x)-3f(x)}{{x}^{4}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,
∴h′(x)=$\frac{xf′(x)-3f(x)}{{x}^{4}}$<0,
∴函數(shù)h(x)在x∈(0,+∞)上單調(diào)遞減,
∴h(2)>g(3),即$\frac{f(2)}{8}$>$\frac{f(3)}{27}$,
∴$\frac{f(2)}{f(3)}$>$\frac{8}{27}$②,
∴綜合①②:$\frac{8}{27}<\frac{f(2)}{f(3)}<\frac{4}{9}$,
故答案為:($\frac{8}{27}$,$\frac{4}{9}$).

點評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、構(gòu)造函數(shù)法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中正確的是(  )
A.矩形的平行投影一定是矩形
B.梯形的平行投影一定是梯形
C.兩條相交直線的投影可能平行
D.一條線段中點的平行投影仍是這條線段投影的中點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.三棱錐A-PBC中,D是線段PC上一點,且AD⊥面BPC,AC=2,BC=3,AB=$\sqrt{7}$,E是BC上一點,且CE=1.
(1)求證:BC⊥面ADE;
(2)若∠ACP和∠BCP互余,求直線AB和面BPC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b是正實數(shù),且a+b=2,則$\frac{1}{2a}$+$\frac{1}{2b}$的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對任意a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng):
X24568
y3040605070
(1)求回歸直線方程.
(2)回歸直線必經(jīng)過的一點是哪一點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知分段函數(shù)f(x)是奇函數(shù),當(dāng)x∈[0,+∞)時的解析式為y=x2,則這個函數(shù)在區(qū)間(-∞,0)上的解析式為y=-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x${\;}^{\frac{1}{2{m}^{2}+2m+1}}$(m∈N*)的奇偶性為( 。
A.奇函數(shù)非偶函數(shù)B.偶函數(shù)非奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既非偶函數(shù)又非奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,D為邊BC上任意一點,$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λμ的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案