【題目】對于任意,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.
(1)已知數(shù)列:1,,是“K數(shù)列”,求實數(shù)m的取值范圍;
(2)是否存在首項為-1的無窮等差數(shù)列為“K數(shù)列”,且其前n項和滿足:,若存在,求出的通項公式;若不存在,請說明理由;
(3)已知各項均為正整數(shù)的等比數(shù)列(至少有4項)為“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,是否存在,使為“K數(shù)列”?若存在,請求出,若不存在,請說明理由.
【答案】(1)(2)這樣的等差數(shù)列不存在,詳見解析(3)答案不唯一,具體見解析
【解析】
(1)直接根據(jù)“K數(shù)列”的定義列出關(guān)于的不等式求解即可.
(2) 假設(shè)存在等差數(shù)列符合要求,設(shè)公差為d,再求得,再利用分析公差滿足的條件是否能夠成立即可.
(3) 設(shè)數(shù)列的公比為q,,再根據(jù)等比數(shù)列為“K數(shù)列”,數(shù)列不是“K數(shù)列”求出前兩項的關(guān)系,再根據(jù)前兩項的關(guān)系分情況討論是否能夠滿足為“K數(shù)列”即可.
(1)由題意得,①,②
解①得;解②得或.
所以,故實數(shù)m的取值范圍是.
(2)假設(shè)存在等差數(shù)列符合要求,設(shè)公差為d,則,
由,得,
由題意,得對均成立,
即.
①當(dāng)時,;
②當(dāng)時,,
因為,
所以,與矛盾,
故這樣的等差數(shù)列不存在.
(3)設(shè)數(shù)列的公比為q,則,
因為的每一項均為正整數(shù),且,
所以,且.
因為,
所以在中,“”為最小項,
同理,在中,為最小項.
由為“K數(shù)列”,只需,即,
又因為不是“K數(shù)列”,且“”為最小項,所以,即,
由數(shù)列的每一項均為正整數(shù),可得,
所以,或,,
①當(dāng),時,,則,
令,則,
又,
所以為遞增數(shù)列,即,
所以,
因為,
所以對任意的,都有,
即數(shù)列為“K數(shù)列”.
②當(dāng),時,,則.因為,
所以數(shù)列不是“K數(shù)列”.
綜上:當(dāng)時,數(shù)列為“K數(shù)列”,
當(dāng)時,數(shù)列不是“K數(shù)列”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為點.為橢圓上的一動點,面積的最大值為.過點的直線被橢圓截得的線段為,當(dāng)軸時,.
(1)求橢圓的方程;
(2)橢圓上任取兩點A,B,以,為鄰邊作平行四邊形.若,則是否為定值?若是,求出定值;如不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個命題,其中真命題的序號是_______.
①時,單調(diào)遞減且沒有最值;
②方程一定有解;
③如果方程有解,則解的個數(shù)一定是偶數(shù);
④是偶函數(shù)且有最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,點是中點,且,現(xiàn)將三角形沿折起,使點到達點的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).
(1) 證明:當(dāng)時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:,;
(2)若函數(shù)在上存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為橢圓:的左、右焦點,離心率為,且橢圓的上頂點到左、右頂點的距離之和為.
(1)求橢圓的標準方程;
(2)過點的直線交橢圓于,兩點,若以為直徑的圓過,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線垂直于軸,與橢圓交于兩點,點在直線上,.
(1)求點的軌跡的方程;
(2)直線與橢圓相交于,與曲線相切于點,為坐標原點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com