某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的單元測(cè)試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…[90,100]后得到如圖所示的頻率分布直方圖.
(1)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)本次單元測(cè)試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(2)若從數(shù)學(xué)成績(jī)?cè)赱40,50)和[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)頻率分布直方圖,求出成績(jī)低于60分的頻率,再求得成績(jī)不低于60分的頻率,然后根據(jù)頻數(shù)=頻率×總數(shù)可求出所求;
(2)成績(jī)?cè)赱40,50)分?jǐn)?shù)段內(nèi)的人數(shù),以及成績(jī)?cè)赱90,100]分?jǐn)?shù)段內(nèi)的人數(shù),列出所有的基本事件,以及兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的基本事件,最后利用古典概型的概率公式解之即可.
解答: 解:(1)根據(jù)頻率分布直方圖,成績(jī)不低于60分的頻率為1-10×(0.005+0.01)=0.85.
由于該校高一年級(jí)共有學(xué)生640人,利用樣本估計(jì)總體的思想,可估計(jì)該校高一年級(jí)數(shù)學(xué)成績(jī)不低于60分的人數(shù)約為640×0.85=544人;
(2)成績(jī)?cè)赱40,50)分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B.
成績(jī)?cè)赱90,100]分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F(xiàn).
若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共15種.
如果兩名學(xué)生的數(shù)學(xué)成績(jī)都在[40,50)分?jǐn)?shù)段內(nèi)或都在[90,100]分?jǐn)?shù)段內(nèi),那么這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值一定不大于10.如果一個(gè)成績(jī)?cè)赱40,50)分?jǐn)?shù)段內(nèi),另一個(gè)成績(jī)?cè)赱90,100]分?jǐn)?shù)段內(nèi),那么這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值一定大于10.
記“這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10”為事件M,則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共7種.
所以所求概率為P(M)=
7
15
點(diǎn)評(píng):本題考查了由頻率分布直方圖求頻率、頻數(shù),考查了古典概型的概率計(jì)算,是概率統(tǒng)計(jì)的基本題型,解答的關(guān)鍵是讀懂頻率分布直方圖,應(yīng)用相關(guān)數(shù)據(jù)進(jìn)行準(zhǔn)確計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Ay=log2(3x-7)},B={x|x是不大于8的自然數(shù)},C={x|x≤a},求:
(Ⅰ)A∩B;
(Ⅱ)若A∩C≠∅,求a的取值范圍;
(Ⅲ)若A∩C中恰有兩個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若給定一組數(shù)據(jù)為xi(i=1,2,…,n),其方差為s2,則數(shù)據(jù)axi+b(i=1,2,…,n)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(
1
2
)2x2-5x+b
,g(x)=(
1
2
)
x2+x+6
,若f(x)<g(x)對(duì)于任意實(shí)數(shù)x恒成立,則實(shí)數(shù)b的取值范圍是( 。
A、b>12B、b<12
C、b<15D、b>15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(Ⅰ)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(Ⅱ) 在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(-
3
,0),B(
3
,0)
,動(dòng)點(diǎn)P(x,y)滿足:||AP|-|BP||=2;
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)直線mx-y+1=0與動(dòng)點(diǎn)P的軌跡只有一個(gè)交點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(其中λ為常數(shù))
(1)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值,若不存在,說明理由.
(2)當(dāng)λ=2時(shí),若數(shù)列{bn}滿足bn+1=an+bn,且b1=
3
2
,令cn=2bn+n.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x=1的傾斜角和斜率分別是( 。
A、90°,不存在
B、45°,1
C、135°,-1
D、180°,不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x],[y]分別表示不大于x,y的最大整數(shù),如[1.6]=1,[-0.3]=-1.則集合S={(x,y)|[x]2+[y]2≤1}表示的平面區(qū)域的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案