某市為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(Ⅰ)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(Ⅱ) 在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
考點(diǎn):等可能事件的概率,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)先分別求出這3組的人數(shù),再利用分層抽樣的方法即可得出答案;
(Ⅱ)從5名志愿者中抽取2名志愿者有10種情況,其中第4組的2名志愿者B1,B2至少有一名志愿者被抽中有7種情況,再利用古典概型的概率計(jì)算公式即可得出.
解答: 解:(Ⅰ) 第3組的人數(shù)為0.3×100=30,第4組的人數(shù)為0.2×100=20,第5組的人數(shù)為0.1×100=10.
因?yàn)榈?,4,5組共有60名志愿者,
所以利用分層抽樣的方法在60名志愿者中抽取6名志愿者,
每組抽取的人數(shù)分別為:第3組:
30
60
×6=3; 第4組:
20
60
×6=2; 第5組:
10
60
×6=1.
所以應(yīng)從第3,4,5組中分別抽取3人,2人,1人;
(Ⅱ) 記第3組的3名志愿者為A1,A2,A3,第4組的2名志愿者為B1,B2,.則從5名志愿者中抽取2名志愿者有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),
(A2,A3),(A2,B1),(A2,B2),
(A3,B1),(A3,B2),(B1,B2)共有10種.
其中第4組的2名志愿者B1,B2至少有一名志愿者被抽中的有:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),
(A3,B1),(A3,B2),(B1,B2),共有7種
所以第4組至少有一名志愿者被抽中的概率為
7
10
點(diǎn)評:熟練掌握頻率分布直方圖、分層抽樣的定義、古典概型的概率計(jì)算公式、互斥事件及相互獨(dú)立事件的概率計(jì)算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x2+
2
sin(x+
π
4
)+x
2x2+cosx
的最大值與最小值的和為( 。
A、πB、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-4x-6y+4=0
(1)過點(diǎn)A(-1,-1)作圓C的切線l1,求切線l1的方程;
(2)不論實(shí)數(shù)m為何值,證明直線l2:mx-y-3m+2=0與圓C總相交;
(3)若直線l2:被圓C截得的弦為AB,求AB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-3)2+(y+
7
3
)2=1
的圓心坐標(biāo)是(  )
A、(3,
7
3
)
B、(3,-
7
3
)
C、(-3,
7
3
)
D、(-
7
3
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,sinA=sinB,則三角形的形狀為(  )
A、直角△B、等腰△
C、等邊△D、銳角△

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的單元測試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…[90,100]后得到如圖所示的頻率分布直方圖.
(1)若該校高二年級共有學(xué)生640人,試估計(jì)該校高二年級本次單元測試數(shù)學(xué)成績不低于60分的人數(shù);
(2)若從數(shù)學(xué)成績在[40,50)和[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若直線y=-2x+3k+14與直線x-4y=-3k-2的交點(diǎn)位于第四象限,求實(shí)數(shù)k的取值范圍.
(2)由動(dòng)點(diǎn)P向圓x2+y2=1引兩條切線PA、PB,切點(diǎn)分別為A、B,∠APB=60°,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3-x
+log2(x+2)的定義域?yàn)椋ā 。?/div>
A、(-∞,3]
B、(-2,3)
C、(-2,3]
D、(-∞,-2)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式ax2+bx+c<0的解集為 {x|x<-1,或x>
1
2
}
,則關(guān)于x的不等式c(lgx)2+lgxb+a<0的解集為
 

查看答案和解析>>

同步練習(xí)冊答案