2.已知函數(shù)f(x)=ax3+$\frac{1}{2}{x^2}$的導(dǎo)函數(shù)為f′(x),且f(x)在x=-1處取得極大值,設(shè)g(x)=$\frac{1}{f'(x)}$,執(zhí)行如圖的程序框圖,若輸出的結(jié)果大于$\frac{2014}{2015}$,則判斷框內(nèi)可填入的條件是(  )
A.n≤2014B.n≤2015C.n>2014D.n>2015

分析 由已知中函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=-1處取得極大值,可求出a值,進(jìn)而求出函數(shù)f(x)及函數(shù)g(x)的解析式,然后利用裂項(xiàng)相消法,可求出g(1)+g(2)+g(3)+…+g(n)的值與n的關(guān)系,分析出最后進(jìn)行循環(huán)的循環(huán)變量n的終值,分析后可得判斷條件.

解答 解:∵函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=-1處取得極大值,
故$\left\{\begin{array}{l}{3a>0}\\{f′(-1)=3a-1=0}\end{array}\right.$,
解得a=$\frac{1}{3}$,
∴f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2,
∴f′(x)=x2+x,
∴g(x)=$\frac{1}{f'(x)}$=$\frac{1}{{x}^{2}+x}$=$\frac{1}{x}$$-\frac{1}{x+1}$,
∴g(1)+g(2)+g(3)+…+g(n)=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
所以當(dāng)判斷框內(nèi)是“n≤2014?”時(shí),輸出結(jié)果為$\frac{2014}{2015}$.
若輸出的結(jié)果S>$\frac{2014}{2015}$,
則表示累加的終值應(yīng)滿足n≤2015,
即n≤2015時(shí),滿足進(jìn)入循環(huán)進(jìn)行累加的條件,n>2015時(shí)退出循環(huán)
故選:B.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從4名男生和6名女生中各選2人參加跳繩比賽,則男生甲和女生乙至少有一個(gè)被選中的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ∈(0,π),且sin($\frac{π}{4}$-θ)=$\frac{\sqrt{2}}{10}$,則tan2θ=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{24}{7}$D.-$\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某錐體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$,表面積為$6+2\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,則x-3y的最小值為-4,點(diǎn)P(x,y)所組成的平面區(qū)域的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在△ABC中,∠B=$\frac{π}{3}$,點(diǎn)D在BC上,cos∠ADC=$\frac{1}{7}$,則cos∠BAD=$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,前n項(xiàng)和為Sn,若${a_7}+{a_8}+{a_9}=\frac{π}{6}$,則cosS15的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b為正實(shí)數(shù),求證:$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$+8ab≥8,并求等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)的定義域是[0,3],則函數(shù)$y=\frac{{f({2x-1})}}{{lg({2-x})}}$的定義域是{x|$\frac{1}{2}$≤x<2且x≠1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案