【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線于兩點(diǎn),求取最小值時(shí)直線的方程.
【答案】(1);(2).
【解析】
(1)直曲聯(lián)立表示出拋物線弦長,得到關(guān)于的方程,求出,得到拋物線的方程.
(2)直線與拋物線聯(lián)立,得到、,再根據(jù)題意,得到點(diǎn)和點(diǎn)的坐標(biāo),用和表示出,代入、的關(guān)系,得到函數(shù),求出最小值.從而得到直線的方程.
(1),直線的方程為,
由,聯(lián)立,
得,,
,
,
拋物線的方程為:.
(2)設(shè),,直線的方程為:,
聯(lián)立方程組消元得:,
∴,.
∴ .
設(shè)直線的方程為,
聯(lián)立方程組解得,
又,∴.
同理得.
∴ .
令,,則.
∴ .
∴當(dāng)即時(shí),取得最小值.
此時(shí)直線的方程為,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,,E是PC的中點(diǎn),平面PAC⊥平面ABCD.
(1)證明:ED∥平面PAB;
(2)若,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)是上的點(diǎn),且 .
(1)求證:對任意的 ,都有.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,
若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.
(1)若直線在軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;
(2)若直線與直線:和:分別相交于、兩點(diǎn),點(diǎn)到、兩點(diǎn)的距離相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查民眾對國家實(shí)行“新農(nóng)村建設(shè)”政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持“新農(nóng)村建設(shè)”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新農(nóng)村建設(shè)” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以50歲為分界點(diǎn)對“新農(nóng)村建設(shè)”政策的支持度有差異;
年齡低于50歲的人數(shù) | 年齡不低于50歲的人數(shù) | 合計(jì) | |
支持 | |||
不支持 | |||
合計(jì) |
(2)為了進(jìn)一步推動(dòng)“新農(nóng)村建設(shè)”政策的實(shí)施,中央電視臺某節(jié)目對此進(jìn)行了專題報(bào)道,并在節(jié)目最后利用隨機(jī)撥號的形式在全國范圍內(nèi)選出4名幸運(yùn)觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫?jiǎng)勵(lì).若以頻率估計(jì)概率,記選出4名幸運(yùn)觀眾中支持“新農(nóng)村建設(shè)”人數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的是
A. 命題“若,則”的否命題是“若,則”
B. 若為假命題,則p,q均為假命題
C. 命題p:,,則:,
D. “”是“函數(shù)為偶函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓與圓關(guān)于直線:對稱.
(1)求圓的方程;
(2)過直線上的點(diǎn)分別作斜率為,4的兩條直線,,求使得被圓截得的弦長與被圓截得的弦長相等時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com