3.定義|$|\begin{array}{l}{a}&\\{c}&nkw843o\end{array}|$|=ad-bc,則$|\begin{array}{l}{sin50°}&{cos40°}\\{-\sqrt{3}tan10°}&{1}\end{array}|$=2sin10°.

分析 根據(jù)新定義,利用三角函數(shù)的恒等變換進(jìn)行化簡運(yùn)算即可.

解答 解:根據(jù)題意,得
$|\begin{array}{l}{sin50°}&{cos40°}\\{-\sqrt{3}tan10°}&{1}\end{array}|$=sin50°-cos40°•(-$\sqrt{3}$tan10°)
=sin50°+$\sqrt{3}$cos40°•$\frac{sin10°}{cos10°}$
=sin50°+$\frac{\sqrt{3}•\frac{1}{2}(sin50°-sin30°)}{cos10°}$
=$\frac{cos10°sin50°+\frac{\sqrt{3}}{2}sin50°-\frac{\sqrt{3}}{4}}{cos10°}$
=$\frac{\frac{1}{2}(sin60°-sin40°)+\frac{\sqrt{3}}{2}sin50°-\frac{\sqrt{3}}{4}}{cos10°}$
=$\frac{\frac{\sqrt{3}}{2}sin50°-\frac{1}{2}cos50°}{cos10°}$
=$\frac{sin(50°-30°)}{cos10°}$
=$\frac{sin20°}{cos10°}$
=2sin10°.
故答案為:2sin10.

點(diǎn)評 本題考查了三角函數(shù)的化簡與運(yùn)算問題,也考查了新定義的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)直角三角形ABC三邊長成等比數(shù)列,公比為q(q>1),則q2的值為$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,若前10項(xiàng)的和S10=60,且a7=7,則a4=( 。
A.4B.-4C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列各式的值.
(1)$\frac{cos75°-sin75°}{cos75°+sin75°}$;
(2)tan36°+tan84°-$\sqrt{3}$tan36°tan84°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y-1≥0}\\{x+y-3≥0}\\{3x+y-11≤0}\end{array}\right.$,則z=$\frac{2y+1}{x-1}$的取值范圍為( 。
A.[-2,3]B.[-$\frac{1}{3}$,3]C.[-$\frac{1}{3}$,$\frac{5}{2}$]D.[$\frac{5}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.集合A={x|x2≤4,x∈Z},a,b∈A,設(shè)直線3x+4y=0與圓(x-a)2+(y-b)2=1相切為事件M,用(a,b)表示每一個基本事件,則事件M的概率為$\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{a}$-$\overrightarrow$|等于(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.2D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,P是矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點(diǎn),求證:AF∥平面PEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),作AC,BD垂直拋物線的準(zhǔn)線l于C,D,其中O為坐標(biāo)原點(diǎn),則下列結(jié)論正確的是①②③.(填序號)
①$\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{BD}-\overrightarrow{BA}$;
②存在λ∈R,使得$\overrightarrow{AD}=λ\overrightarrow{AO}$成立;
③$\overrightarrow{FC}•\overrightarrow{FD}$=0;
④準(zhǔn)線l上任意一點(diǎn)M,都使得$\overrightarrow{AM}•\overrightarrow{BM}$>0.

查看答案和解析>>

同步練習(xí)冊答案