11.在等差數(shù)列{an}中,a1+a6=12,a4=7,求an及前n項和Sn

分析 由題意知a1+a6=a3+a4=12,由a4=7,知a3=5,所以d=2,an=2n-1,a1=1,結(jié)合等差數(shù)列的前n項和公式求得Sn

解答 解:∵數(shù)列{an}是等差數(shù)列,
∴a1+a6=a3+a4=12,
∵a4=7,
∴a3=5,
∴d=a4-a3=2
∴an=5+(n-3)•2=2n-1
又a1=1,
∴Sn=n+$\frac{n(n-1)}{2}$×2=n2

點評 本題考查數(shù)列的性質(zhì)和應用,解題時要認真審題,仔細解答.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的極值點與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-x2-x-a.
(1)求f(x)的極值;
(2)若函數(shù)f(x)有且只有一個零點,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,x∈(0,e],(e是自然對數(shù)的底數(shù)),a∈R.
(1)討論當a=1時,f(x)的極值;
(2)在(1)的條件下,證明:f(x)>g(x)+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.5個人分4張無座足球票,每人至多分一張,而且必須分完,不同的分發(fā)種數(shù)有(  )
A.$A_5^4$種B.45C.$C_5^4$種D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知等差數(shù)列{an}中,a2+a8=10,則該數(shù)列前9項和S9等于( 。
A.18B.27C.36D.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,則|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,設(shè)$\overrightarrow{p}$=(c-b,c-a),$\overrightarrow{q}$=(sinA,sinB+sinC),且$\overrightarrow{p}$∥$\overrightarrow{q}$,則B=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.分別求出下列兩個程序的運行結(jié)果:

查看答案和解析>>

同步練習冊答案