7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Rn

分析 (1)an+1=1+Sn(n∈N*),變形為an=1+Sn-1(n>1),兩式相減,再利用等比數(shù)列的通項(xiàng)公式即可得出;
(2)求得數(shù)列{$\frac{n}{{a}_{n}}$}為{n•($\frac{1}{2}$)n-1},再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)即可得到所求.

解答 解:(1)∵a1=1,an+1=1+Sn(n∈N*),
∴an=1+Sn-1(n>1)
兩式相減可得an+1-an=Sn-Sn-1=an
即有an+1=2an,由a2=2,
可得an=a2•2n-2=2n-1,
對(duì)n=1也成立,
則an=2n-1(n∈N*);
(2)數(shù)列{$\frac{n}{{a}_{n}}$}為{n•($\frac{1}{2}$)n-1},
前n項(xiàng)和Rn=1•($\frac{1}{2}$)0+2•$\frac{1}{2}$+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1,
$\frac{1}{2}$Rn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,
兩式相減可得$\frac{1}{2}$Rn=1+($\frac{1}{2}$)1+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n
化簡(jiǎn)可得前n項(xiàng)和Rn=4-$\frac{n+2}{{2}^{n-1}}$.

點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等比數(shù)列的通項(xiàng)公式,數(shù)列的求和方法:錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.295是等差數(shù)列-5,-2,1,…的第(  )項(xiàng).
A.99B.100C.101D.102

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.作出下列函數(shù)一個(gè)周期的圖象,并指出振幅、周期和初相.
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.直線l過(guò)直線2x+y+8=0和直線x+y+3=0的交點(diǎn),且垂直于直線4x+14y-1=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知兩非零向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線.設(shè)$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ、μ∈R且λ22≠0),則( 。
A.$\overrightarrow{a}$∥$\overrightarrow{{e}_{1}}$B.$\overrightarrow{a}$∥$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{a}$與$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面D.以上三種情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),左、右焦點(diǎn)分別為F1、F2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2+1的取值范圍為( 。
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線PA、PB的斜率分別為k1、k2,若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,則|k1•k2|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知A 為橢圓上一點(diǎn),E,F(xiàn) 分別為橢圓的左右焦點(diǎn),∠EAF=90°,設(shè)AE 的延長(zhǎng)線交橢圓于B,又|AB|=|AF|,則橢圓的離心率e為( 。
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)用輾轉(zhuǎn)相除法求840與1764的最大公約數(shù).
(2)用更相減損術(shù)求561與255的最大公約數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案