【題目】某大學宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.
(1)設在一次游戲中,摸出紅球的個數為,求分布列.
(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.
①求一次游戲中,獲獎的概率;
②若每次游戲結束后,將球放回原來的箱子,設4次游戲中獲獎次數為,求的數學期望.
科目:高中數學 來源: 題型:
【題目】某公園要設計如圖所示的景觀窗格(其結構可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設計方案要求:內部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實線部分,軸和邊框的粗細忽略不計)總長度為米.
(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;
(2)由于預算經費限制,景觀窗格的外框總長度不超過米,當景觀窗格的面積(多邊形的面積)最大時,給出此景觀窗格的設計方案中的大小與的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數其中且
(i)當時,若,則實數的取值范圍是___________;
(ii) 若存在實數使得方程有兩個實根,則實數的取值范圍是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的方程為,曲線:(為參數,),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線與軸圍成的區(qū)域(不含邊界)內,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為為參數,以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為.
求曲線C的直角坐標方程與直線l的極坐標方程;
Ⅱ若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生將語文、數學、英語、物理、化學、生物6科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數學,物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數為( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.已知曲線的參數方程為(為參數),,為過點的兩條直線,交于,兩點,交于,兩點,且的傾斜角為,.
(1)求和的極坐標方程;
(2)當時,求點到,,,四點的距離之和的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了更好地服務民眾,某共享單車公司通過向共享單車用戶隨機派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結果相互獨立.
(I)求用戶騎行一次獲得0元獎券的概率;
(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為是拋物線上橫坐標為4且位于軸上方的點,點到拋物線準線的距離等于5.過點作垂直于軸,垂足為的中點為.
(1)求拋物線方程;
(2)過點作,垂足為,求點的坐標;
(3)以點為圓心,為半徑作圓,當是軸上一動點時,討論直線與圓的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com