19.min(a,b)表示a,b中的最小值,執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為4,10,則輸出的min(a,b)值是(  )
A.0B.1C.2D.4

分析 模擬執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的c,b,a的值,當(dāng)c=b=a=2時(shí),滿(mǎn)足條件退出循環(huán),從而得解.

解答 解:模擬程序的運(yùn)行,可得
a=4,b=10
不滿(mǎn)足判斷框內(nèi)條件,執(zhí)行循環(huán)體,c=10,b=6,a=10
不滿(mǎn)足判斷框內(nèi)條件,執(zhí)行循環(huán)體,c=6,b=4,a=6
不滿(mǎn)足判斷框內(nèi)條件,執(zhí)行循環(huán)體,c=4,b=2,a=4
不滿(mǎn)足判斷框內(nèi)條件,執(zhí)行循環(huán)體,c=2,b=2,a=2
滿(mǎn)足判斷框內(nèi)條件,退出循環(huán),輸出min(a,b)=2.
故選:C.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程模擬運(yùn)行程序是解答此類(lèi)問(wèn)題的常用方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,一個(gè)簡(jiǎn)單空間幾何體的三視圖其主視圖與左視圖都是邊長(zhǎng)為2的正三角形,其俯視圖輪廓為正方形,則其體積是$\frac{4\sqrt{3}}{3}$,表面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為$5{cos^2}θ+9{sin^2}θ=\frac{45}{ρ^2}$,且直線(xiàn)l經(jīng)過(guò)橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線(xiàn)l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.觀(guān)察($\frac{1}{x}$)'=-$\frac{1}{x^2}$,(x3)'=3x2,(sinx)'=cosx,由歸納推理可得:若函數(shù)f(x)在其定義域上滿(mǎn)足f(-x)=-f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)=(  )
A.-f(x)B.f(x)C.g(x)D.-g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.(x2+$\frac{1}{2x}$)6的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)為( 。
A.$\frac{15}{16}$B.$\frac{3}{16}$C.$\frac{15}{2}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如下等式:

以此類(lèi)推,則2018出現(xiàn)在第31個(gè)等式中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.145B.148C.278D.285

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.(1-x)8+(1-x24的展開(kāi)式中x6項(xiàng)的系數(shù)為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,輸出的a,b的值分別等于( 。
A.32,$-\frac{{\sqrt{2}}}{6}-\frac{1}{3}$B.32,$\frac{{\sqrt{2}}}{6}+\frac{1}{3}$C.8,$-\frac{{\sqrt{2}}}{2}-1$D.32,$\frac{{\sqrt{2}}}{2}+1$

查看答案和解析>>

同步練習(xí)冊(cè)答案