函數(shù)f(x)=tan(2x+
π
4
)的最小正周期是
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用正切函數(shù)y=Atan(ωx+φ)的周期公式T=
π
|ω|
即可求得答案.
解答: 解:∵f(x)=tan(2x+
π
4
),
∴其最小正周期T=
π
2
,
故答案為:
π
2
點評:本題考查正切函數(shù)的周期,熟練掌握周期公式是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=x|x-a|+2x.
(1)若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值;
(2)若a>2,寫出函數(shù)f(x)的單調(diào)區(qū)間(不必證明);
(3)若存在a∈[-2,4],使得關(guān)于x的方程f(x)=t•f(a)有三個不相等的實數(shù)解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知M是橢圓
x2
4
+
y2
12
=1上在第一象限的點,A(2,0),B(0,2
3
)是橢圓兩個頂點,求四邊形OAMB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P在曲線y=
1
2
ex上,點Q在曲線y=ln(2x)上,則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+sin2x-1圖象的對稱中心是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x3-3x2+x的圖象上過原點的切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
π
2
0
(-cosx)dx,則二項式(x2+
a
x
5的展開式中x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=log
1
2
x的反函數(shù)為g(x),則函數(shù)y=f(x)+g(x)在區(qū)間[1,2]上值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,點P是直線BC1的動點,則下列四個命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變:
其中正確的命題有
 
.(把所有正確命題的編號填在橫線上)

查看答案和解析>>

同步練習(xí)冊答案