分析 (1)建立空間坐標(biāo)系,求出直線對(duì)應(yīng)的向量,利用向量法即可證明PB∥平面MAC;
(2)根據(jù)線面垂直的判定定理結(jié)合向量法即可證明PC⊥平面AEM;
(3)根據(jù)二面角的定義作出二面角的平面角,結(jié)合向量即可求二面角A-PC-D的大。
解答 解:如圖建立空間直角坐標(biāo)系D-xyz,設(shè)AD=1
(1)$\overrightarrow{PB}=(1,0,-1)$,$\overrightarrow{MG}=(\frac{1}{2},0,-\frac{1}{2})$,所以$\overrightarrow{PB}=2\overrightarrow{MG}$,
即PB∥MG,因此,PB∥平面MAC.…(4分)
(2)$\overrightarrow{PC}=(1,1,-1)$,$\overrightarrow{AM}=(0,\frac{1}{2},\frac{1}{2})$,
故$\overrightarrow{PC}•\overrightarrow{AM}=0+\frac{1}{2}-\frac{1}{2}=0$,
所以PC⊥AM,又PC⊥EM,
所以 PC⊥平面AEM…(8分)
(3)由(2)知PC⊥AE,故MEA是二面角A-PC-D的平面角.
設(shè)E=(x,y,z),則$\overrightarrow{PF}=(x,y,z-1)$.因?yàn)?\overrightarrow{PE}=k\overrightarrow{PC}$,
所以(x,y,z-1)=k(1,1,-1),
即x=k,y=k,z=1-k.
所以$\overrightarrow{PC}•\overrightarrow{AE}=(1,1,-1)•(k,k,1-k)=k+k-1+k=3k-1=0$,
所以k=$\frac{1}{3}$,點(diǎn)$E=(\frac{1}{3},\frac{1}{3},\frac{2}{3})$.
又點(diǎn)$M=(0,\frac{1}{2},\frac{1}{2})$,所以$\overrightarrow{ME}=(-\frac{1}{3},\frac{1}{6},-\frac{1}{6})$,$\overrightarrow{FE}$=($-\frac{1}{3}$,$\frac{1}{6}$,-$\frac{1}{6}$),
故$cos∠MEA=\frac{{(-\frac{1}{3},\frac{1}{6},-\frac{1}{6})•(-\frac{1}{3},-\frac{1}{3},-\frac{2}{3})}}{{\frac{{\sqrt{6}}}{6}•\frac{{\sqrt{6}}}{3}}}=\frac{1}{2}$,
所以∠MEA=60°,即二面角A-PC-D的大小為60°…(12分)
點(diǎn)評(píng) 本題主要考查線面垂直和線面平行的判定定理以及空間二面角的求解,利用相應(yīng)的性質(zhì)定理以及二面角的定義作出二面角的平面角是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2×0.44 | B. | 2×0.64 | C. | 3×0.44 | D. | 3×0.64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{2}$ | B. | $\sqrt{11}$ | C. | $\sqrt{6}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$ | B. | ${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$ | ||
C. | ${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$ | D. | ${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com