7.如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點(diǎn)M是PD的中點(diǎn),作ME⊥PC,交PC于點(diǎn)E.
(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A-PC-D的大。

分析 (1)建立空間坐標(biāo)系,求出直線對(duì)應(yīng)的向量,利用向量法即可證明PB∥平面MAC;
(2)根據(jù)線面垂直的判定定理結(jié)合向量法即可證明PC⊥平面AEM;
(3)根據(jù)二面角的定義作出二面角的平面角,結(jié)合向量即可求二面角A-PC-D的大。

解答 解:如圖建立空間直角坐標(biāo)系D-xyz,設(shè)AD=1
(1)$\overrightarrow{PB}=(1,0,-1)$,$\overrightarrow{MG}=(\frac{1}{2},0,-\frac{1}{2})$,所以$\overrightarrow{PB}=2\overrightarrow{MG}$,
即PB∥MG,因此,PB∥平面MAC.…(4分)
(2)$\overrightarrow{PC}=(1,1,-1)$,$\overrightarrow{AM}=(0,\frac{1}{2},\frac{1}{2})$,
故$\overrightarrow{PC}•\overrightarrow{AM}=0+\frac{1}{2}-\frac{1}{2}=0$,
所以PC⊥AM,又PC⊥EM,
所以 PC⊥平面AEM…(8分)
(3)由(2)知PC⊥AE,故MEA是二面角A-PC-D的平面角.
設(shè)E=(x,y,z),則$\overrightarrow{PF}=(x,y,z-1)$.因?yàn)?\overrightarrow{PE}=k\overrightarrow{PC}$,
所以(x,y,z-1)=k(1,1,-1),
即x=k,y=k,z=1-k.
所以$\overrightarrow{PC}•\overrightarrow{AE}=(1,1,-1)•(k,k,1-k)=k+k-1+k=3k-1=0$,
所以k=$\frac{1}{3}$,點(diǎn)$E=(\frac{1}{3},\frac{1}{3},\frac{2}{3})$.
又點(diǎn)$M=(0,\frac{1}{2},\frac{1}{2})$,所以$\overrightarrow{ME}=(-\frac{1}{3},\frac{1}{6},-\frac{1}{6})$,$\overrightarrow{FE}$=($-\frac{1}{3}$,$\frac{1}{6}$,-$\frac{1}{6}$),
故$cos∠MEA=\frac{{(-\frac{1}{3},\frac{1}{6},-\frac{1}{6})•(-\frac{1}{3},-\frac{1}{3},-\frac{2}{3})}}{{\frac{{\sqrt{6}}}{6}•\frac{{\sqrt{6}}}{3}}}=\frac{1}{2}$,
所以∠MEA=60°,即二面角A-PC-D的大小為60°…(12分)

點(diǎn)評(píng) 本題主要考查線面垂直和線面平行的判定定理以及空間二面角的求解,利用相應(yīng)的性質(zhì)定理以及二面角的定義作出二面角的平面角是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若隨機(jī)變量X~B(n,0.4),且EX=2,則P(X=1)的值是( 。
A.2×0.44B.2×0.64C.3×0.44D.3×0.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖(1),在正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)沿SE、SF及EF把這個(gè)正方形折成一個(gè)幾何體如圖(2),使G1、G2、G3三點(diǎn)重合于點(diǎn)G.證明:
(1)G在平面SEF上的射影為△SEF的垂心;
(2)求二面角G-SE-F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知平行六面體ABCD-A′B′C′D′中,底面是邊長(zhǎng)為1的菱形,且DD′=2,∠BAD=∠BAA′=∠DAA′=60°,則AC′等于(  )
A.$\frac{17}{2}$B.$\sqrt{11}$C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知α-l-β為60°,β內(nèi)一點(diǎn)P在α內(nèi)的射影為P′,若|PP′|=2,則P′到β的距離是( 。
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.增廣矩陣$(\begin{array}{l}{1}&{4}&{-3}&{3}\\{3}&{0}&{9}&{4}\\{2}&{1}&{-2}&{5}\end{array})$對(duì)應(yīng)方程組的系數(shù)行列式中,元素3的代數(shù)余子式的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f1(x)=|3x-1|,f2(x)=|a•3x-9|,x∈R,且f(x)=$\left\{\begin{array}{l}{{f}_{1}(x),{f}_{1}(x)≤{f}_{2}(x)}\\{{f}_{2}(x),{f}_{1}(x)>{f}_{2}(x)}\end{array}\right.$
(1)當(dāng)a=1時(shí),請(qǐng)寫(xiě)出f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)2≤a<9時(shí),設(shè)f(x)=f2(x)對(duì)應(yīng)的自變量取值區(qū)間的長(zhǎng)度為l(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m)求l關(guān)于a的表達(dá)式,并求出l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=lnx-\frac{1}{x}$的零點(diǎn)為x0,則下列結(jié)論正確的是( 。
A.$ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$B.${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$
C.${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$D.${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.當(dāng)x∈(-∞,1],不等式$\frac{{1+{2^x}+{4^x}•a}}{{{a^2}-a+1}}$>0恒成立,則實(shí)數(shù)a的取值范圍為a>$-\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案