某地今年年初有居民住房面積為m2,其中需要拆除的舊房面積占了一半,當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%的住房增長率建設(shè)新住房,同時(shí)每年拆除xm2的舊住房,又知該地區(qū)人口年增長率為4.9‰.
(1)如果10年后該地區(qū)的人均住房面積正好比目前翻一番,那么每年應(yīng)拆除的舊住房面積x是多少?
(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的舊房?
下列數(shù)據(jù)供計(jì)算時(shí)參考:

1.19=2.38
1.00499=1.04
1.110=2.6
1.004910=1.05
1.111=2.85
1.004911=1.06
 

(1);(2)需過16年才能拆除所有需要拆除的舊房.

解析試題分析:(1)由題意可設(shè)今年人口為人,則年后人口為,可先寫出
年后的住房面積為,
年后的住房面積為,
年后的住房面積為
由此可以推測(cè)年后的住房面積為
,
再由題意人均住房面積正好比目前翻一番,可列出方程,從而解得;(2)由(1)可得,每年拆除的住房面積為,從而根據(jù)條件需要拆除的舊房面積占了一半,可知拆除所有需要拆除的舊房需要的時(shí)間為年.
(1)設(shè)今年人口為人,則年后人口為      3分
年后的住房面積為,
年后的住房面積為,
年后的住房面積為,
年后的住房面積為.........8分
                            12分
;                                  13分
(2)由(1)可得全部拆除舊房還需年,
即需過16年才能拆除所有需要拆除的舊房..........  16分;
考點(diǎn):數(shù)列的綜合運(yùn)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

在實(shí)數(shù)等比數(shù)列中,有 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足a1+a2+a3=14,且a2+1是a1,a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog2an,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若存在n∈N*,使得Sn+1﹣2≤8n3λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、.若,成等比數(shù)列,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列中,,前項(xiàng)的和是,且,.
(1)求出
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩容器中分別盛有兩種濃度的某種溶液,從甲容器中取出溶液,將其倒入乙容器中攪勻,再從乙容器中取出溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:,,第次調(diào)和后的甲、乙兩種溶液的濃度分別記為:、.
(1)請(qǐng)用、分別表示;
(2)問經(jīng)過多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•山東)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=an+(﹣1)nlnan,求數(shù)列{bn}的前2n項(xiàng)和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,
(1)求數(shù)列的通項(xiàng);
(2)令求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案