在△ABC中,若sin2C=sin2A+sin2B+sinAsinB,則C=( 。
A、30°B、60°
C、120°D、150°
考點:余弦定理,正弦定理
專題:解三角形
分析:已知等式利用正弦定理化簡得到關(guān)系式,利用余弦定理表示出cosC,將得出關(guān)系式代入求出cosC的值,即可確定出C的度數(shù).
解答: 解:△ABC中,sin2C=sin2A+sin2B+sinAsinB,
利用正弦定理化簡得:c2=a2+b2+ab,即a2+b2-c2=-ab,
∴cosC=
a2+b2-c2
2ab
=-
1
2
,
則C=120°.
故選:C.
點評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(2,x),
b
=(-1,2),若
b
a
-2
b
垂直,則x等于( 。
A、2B、-4C、-6D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,i為虛數(shù)單位,且xi-y=-1+i,則(1-i)x+y的值是( 。
A、2B、-2iC、-4D、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=2n-l,n∈Z},B={x|x2一4x<0},則A∩B=( 。
A、{1}
B、{x|1<x<4}
C、{1,3}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非零向量
a
,
b
,
c
滿足
a
b
,且
b
c
=0,則(
a
+
b
)•
c
=( 。
A、4B、3C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin3x的圖象作下列平移可得y=sin(3x+
π
6
)的圖象(  )
A、向右平移 
π
6
個單位
B、向左平移
π
6
個單位
C、向右平移
π
18
個單位
D、向左平移
π
18
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓內(nèi)的兩條弦AB,CD相交于圓內(nèi)一點P,已知PA=PB=6,PC=
1
4
PD,則CD=( 。
A、15B、18C、12D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=1,|
b
|=1,
(1)若
a
-2
b
a
垂直,求
a
b
的夾角;
(2)若
a
b
,且
c
=
a
+2x
b
,
d
=3x
a
+2
b
,若
c
,
d
的夾角為鈍角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2,x<1
alnx,x≥1
,其中a為實常數(shù),且a≠0.
(Ⅰ)若a≤-1,證明:當(dāng)x≥1時,f(x)≥(a+2)x-x2;
(Ⅱ)設(shè)0為坐標原點,若在函數(shù)y=f(x)的圖象上總存在不同兩點A,B,使OA⊥OB,且線段AB的中點在y軸上,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案