5.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{7}$,$sinB=\frac{{\sqrt{21}}}{7}$,求AC的長度.

分析 (1)利用向量共線定理、和差公式可得$f(x)=2sin(x+\frac{π}{3})$,再利用三角函數(shù)的周期性與單調(diào)性即可得出.
(2)由$f(2A-\frac{π}{6})$=1,得$sin(2A+\frac{π}{6})=\frac{1}{2}$,及其0<A<π即可得出.

解答 解:(1)∵$\overrightarrow a∥\overrightarrow b$,
∴$\frac{1}{2}f(x)=\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx$,
∴$f(x)=2sin(x+\frac{π}{3})$,
則函數(shù)f(x)的最小正周期為2π,最大值為2.
(2)由$f(2A-\frac{π}{6})$=1,得$sin(2A+\frac{π}{6})=\frac{1}{2}$,
∵0<A<π,∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{13π}{6}$,
∴$2A+\frac{π}{6}=\frac{5π}{6}$,即$A=\frac{π}{3}$.
由正弦定理得 $\frac{BC}{sinA}=\frac{AC}{sinB}$,
得$AC=\frac{BC•sinB}{sinA}=2$.

點評 本題考查了向量共線定理、和差公式、三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知P={x|x<2},Q={x|x<a},若“x∈P”是“x∈Q”的必要不充分條件,則實數(shù)a的取值范圍是( 。ā 。
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,過圓x2+y2=$\frac{12}{7}$上一點($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)作圓的切線,切線l恰好經(jīng)過橢圓的右頂點和上頂點,A為橢圓上異于長軸頂點的任意一點.
(1)求橢圓C的標準方程;
(2)已知點P(4,0),直線AP與橢圓的另一個交點為B,直線BF與橢圓的另一個交點為C,設(shè)直線AP的斜率為k1,直線BF的斜率為k2,求$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.對于函數(shù)f(x)=x3-3x2,給出命題:
①f(x)是增函數(shù),無極值;
②f(x)是減函數(shù),無極值;
③f(x)的遞增區(qū)間為(-∞,0),(2,+∞),遞減區(qū)間為(0,2);
④f(0)=0是極大值,f(2)=-4是極小值.
其中正確的命題有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b(a,b≠0),不得分的概率為$\frac{a+b}{2}$.若他投籃一次得分ξ的數(shù)學期望$Eξ>\frac{7}{4}$,則a的取值范圍是($\frac{5}{12}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+x2-xlna(a>0且a≠1);
(1)求證:函數(shù)f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
(2)當a>1時,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,a,b,c分別是其所對的邊,若a=1,b=$\sqrt{3}$,則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=x3+2x2-4x+5
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在[-3,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.一物體在力F(x)=$\left\{\begin{array}{l}{10,0≤x≤2}\\{3x+4,x>2}\end{array}\right.$(單位:N)的作用下沿與力F(x)相同的方向運動了4米,力F(x)做功為( 。
A.44 JB.46 JC.48 JD.50 J

查看答案和解析>>

同步練習冊答案