1.定義在R上的函數(shù)y=f(x-1)是單調(diào)遞減函數(shù)(如圖所示),給出四個(gè)結(jié)論,其中正確結(jié)論個(gè)數(shù)是(  )
①f(0)=1  ②f(1)<1    ③f-1(1)=0    ④f-1($\frac{1}{2}$)>0.
A.1B.2C.3D.4

分析 直接利用函數(shù)的圖象,判斷選項(xiàng)的正誤即可.

解答 解:定義在R上的函數(shù)y=f(x-1)是單調(diào)遞減函數(shù)(如圖所示),
可知①f(0)=1 正確;
②f(1)<1 正確;
③函數(shù)y=f(x)的反函數(shù),y=f-1(x),∵f(0)=1,
∴f-1(1)=0  正確;
④f(x)=$\frac{1}{2}$,可得x>1,
∴f-1($\frac{1}{2}$)>0正確;
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)與反函數(shù)的對(duì)應(yīng)關(guān)系,函數(shù)的圖象的變換,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列{an}的公差d∈(-1,0),且$\frac{si{n}^{2}{a}_{3}co{s}^{2}{a}_{6}-co{s}^{2}{a}_{3}si{n}^{2}{a}_{6}}{sin({a}_{2}+{a}_{7})}$=1,僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1的取值范圍是(  )
A.($\frac{7π}{6}$,$\frac{4π}{3}$)B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.[$\frac{4π}{3}$,$\frac{3π}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={0,1,2},B={x|x2≤4,x∈N},則A∪B=(  )
A.{1,2}B.{0,1,2}C.{x|-2≤x≤2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.有5名男生和3名女生,從中選出5人分別擔(dān)任語文、數(shù)學(xué)、英語、物理、化學(xué)學(xué)科的課代表,若某女生必須擔(dān)任語文課代表,則不同的選法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在銳角△ABC中,角A、B、C的對(duì)邊分別是a,b,c若a=4,b=5,△ABC的面積為5$\sqrt{3}$,則|AB|=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)α,β,γ是三個(gè)不重合的平面,m,n是兩條不重合的直線,則下列說法正確的是( 。
A.若α⊥β,β⊥γ,則α∥γB.若α⊥β,m∥β,則m⊥αC.若m⊥α,n⊥α,則m∥nD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sinx-$\frac{\sqrt{3}}{2}$x,x∈(0,2π)
(Ⅰ)求函數(shù)f(x)的圖象在x=$\frac{π}{6}$處的切線方程
(Ⅱ)求f(x)在給定定義域內(nèi)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知隨機(jī)變量的分布列為:$P(X=k)=\frac{1}{3^k},k=1,2,…$,則P(2<X≤4)=( 。
A.$\frac{3}{64}$B.$\frac{1}{64}$C.$\frac{4}{81}$D.$\frac{1}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.a(chǎn)1,a2,…,an是兩兩互不相同正整數(shù).求證:1+$\frac{1}{2}$+…+$\frac{1}{n}$≤a1+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{n}^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案